
An analysis of Comb Sort

Felipe Vaiano Calderan ∗

Federal University of São Paulo (UNIFESP)

May 2022

Abstract

Comb Sort is an unstable sorting algorithm that bet-
ters Bubble Sort by first comparing elements that are
far apart and by progressively reducing this gap until
the compared elements are directly adjacent to one
another. At this point, it behaves exactly like the
Bubble Sort. The purpose of adding said gap is to
eliminate small values at the end of the array (assum-
ing an ascending sort), since they are accountable for
the biggest slowdowns in a Bubble Sort. An anal-
ysis of the algorithm shows its average performance
is significantly better than Bubble Sort’s. This pa-
per also exhibits many tests that display how Comb
Sort stacks up against 6 other algorithms: Bubble
Sort, Heap Sort, Insertion Sort, Merge Sort, Quick
Sort and Selection Sort using different array sizes and
starting distributions.

Contents

1 Introduction 1

2 Comb Sort 2
2.1 Worst Case Scenario 3
2.2 Average Case Scenario 3
2.3 Best Case Scenario 3

3 Implementation 4
3.1 Main Function 4
3.2 Sorting Algorithms 4

∗fvcalderan@gmail.com

3.3 Array Generation Tool 5
3.4 Comb Sort Shrink Tool 5

4 Computational Environment 5
4.1 Computer Specifications 5
4.2 Array Set 1 5
4.3 Array Set 2 5

5 Tests 5
5.1 CPU Time, Number of Comparisons,

and Number of Movements 5
5.1.1 Almost ordered 6
5.1.2 Inversely Ordered 6
5.1.3 Randomly Ordered 7
5.1.4 All arrays 8

5.2 Shrink constant effect 8

6 Conclusion 9

1 Introduction

Sorting arrays is one of the most recurrent tasks in
computer science, since data is a core part of most
pieces of software. This, of course, makes sorting al-
gorithms an important topic to be researched, but
they represent more than techniques that solve this
specific job: they help computer scientists discuss
how to discover, analyze and improve good algo-
rithms, in general [5].

There are multiple versions of these algorithms,
where some are easier to implement and have reduced
source code. This is, more often than not, relevant

1

when they are implemented in systems with very lim-
ited program memory, such as rudimentary embed-
ded systems. One example of this kind of algorithm
is the Bubble Sort, even though there are better ones
in every conceivable way.
Another ordinary use of the Bubble Sort is in un-

dergraduate courses, which is a controversial topic
in itself, because the algorithm it’s highly contraindi-
cated by many scientists and educators, because they
believe that early courses should adhere to estab-
lished best practices [1].
The main problem with Bubble Sort is its time

complexity and general purposelessness. It has an av-
erage time complexity of O(n2) and performs worse
than some famous algorithms in the same class, like
Insertion Sort and Selection Sort, as shown in figure
1. Moreover, Insertion Sort has the big advantage of
sorting almost sorted arrays efficiently and Selection
Sort can sort arrays with a linear number of move-
ments, while Bubble Sort doesn’t have any specialty
attached.
Even with all the drawbacks, different ways to im-

prove Bubble Sort were developed over the years. In
1968, Batcher [2] suggested a very intricate improve-
ment that works by merging pairs of sorted subse-
quences, essentially being a merge exchange sort [5].
In 1980, Dobosiewicz [4] suggested a simpler alterna-
tive that essentially replicated what Shell Sort does to
Insertion Sort default algorithm, but to Bubble Sort.
Lacey [6] later rediscovered this same alternative in
1991 and called it the Comb Sort.
In this paper, I describe in details the idea be-

hind the Comb Sort, then, I present an analysis of
its complexity and show various comparisons with
other sorting algorithms, some that have O(n2) aver-
age time complexity and others that have O(nlogn)
average time complexity. The comparisons are used
to provide discussions and analyses of the CPU time
usage, number of comparisons and number of move-
ments of various algorithms.

2 Comb Sort

Thinking about the Comb Sort as a variation of Shell
Sort, its comparisons and movements are made in re-

101 102 103 104 105 106

Array size

10 3

10 2

10 1

100

101

102

103

C
PU

 T
im

e
(s

)

insertion
selection
bubble

Figure 1: Average CPU time taken by O(n2) algo-
rithms to sort Array Set 1 (see 4.2)

lation to elements not necessarily adjacent to one an-
other, but rather, with an ever-reducing gap between
them. This leads to the possibility of elements with
equal value end up swapped (the one with smaller
index, initially, can end up with a greater one) at
the end of the sorting procedure, causing the algo-
rithm to be unstable. The distance formed by the
gap is known as the increment of the algorithm, and
when the increment is 1, Comb Sort behaves precisely
like Bubble Sort. A very high-level description of the
Comb Sort algorithm is:

1. n← |array|, gap← n, shrink > 1

2. gap← 1 if gap = 1, else gap← ⌊gap/shrink⌋

3. Compare each element at the position i with the
one at the (gap+ i)th position, ∀ i ∈ [0..n−gap].
If the first is bigger, swap them.

4. While the array is not sorted, repeat from 2.

2

Having the algorithm described, let’s examine its
time and space complexities in the worst, average and
best case scenarios.
The space complexity is trivial: Comb Sort, just

like Bubble Sort, uses a fixed number of auxiliary
variables to perform the movements, so it does not
depend on the size or order of elements of the input
array. In other words, the space complexity of the
algorithm is O(1), independently of the input array.

To analyze the time complexity, two different fac-
tors need to be taken into consideration: the function
that quantifies the number of comparisons C(n) and
the number of movements M(n). The overall time
complexity is yielded by T (n) = C(n) +M(n).

2.1 Worst Case Scenario

To obtain the worst case possible for the Comb Sort
algorithm, the following circumstances are required:

• shrink = |array|

• Array is inversely ordered

The first item causes Comb Sort to immediately
behave like Bubble Sort, because in the setup gap =
|array| and shrink = |array|, so already in the first
iteration gap← ⌊gap/shrink⌋ = ⌊n/n⌋ = 1.

The second item triggers the worst case for Bub-
ble Sort (which is now also the worst case of Comb
Sort). The time complexity for the worst case for
the Bubble Sort is O(n2) [1]. This is both for num-
ber of comparisons and movements, therefore T (n) =
C(n) +M(n) = O(n2) +O(n2) = O(n2).

Changing the value of shrink will not make the
performance any worse, since O(n2) is the maximal
value for time complexity T (n) of the Bubble Sort
algorithm. This means that if the complexity of the
Comb Sort algorithm is Ts, where s is the shrink
value, it’s veracious that Ts′ ∈ O(Tn) = O(n2), s′ ̸=
n.

2.2 Average Case Scenario

Let’s consider the average case scenario for when
shrink = |array| and that the array is well shuffled.

As already mentioned, this makes the Comb Sort act
like Bubble Sort.

In this case, Comb Sort compares each element
with every other one to check if any need to be raised
to higher indices. This makes the number of compar-
isons quadratic, that is, C(n) = O(n2).

The number of movements isM(n) = 3S(n), where
S(n) is the number of swaps. This is taking into
consideration that to swap two indices A and B, an
auxiliary variable C is a requisite, and 3 different
movements are done: C ← A, A← B, B ← C.

In a shuffled array, each element will be, in average,
at a position that is n/2 indices away from its post-
sort position. Hence, the average number of swaps
is S(n) = n · n/2 = n2/2, so the average number of
movements is M(n) = 3n2/2 ∈ O(n2) and the time
complexity is T (n) = C(n) +M(n) = O(n2).

If any value of shrink can be picked, the complex-
ity can be trimmed to Ω(n2/2p), where p is the num-
ber of increments. The proof for this case is much
more sophisticated and requires advanced mathemat-
ical concepts, therefore I encourage the reader to read
the paper by Brejova [3] dedicated to this topic.

2.3 Best Case Scenario

The best case happens in a very similar fashion to the
worst case, except the array should be ordered (not
inversely ordered). Having Comb Sort behave just
like Bubble Sort, if the array is already ordered, the
best case scenario for the Bubble Sort algorithm hap-
pens. In this situation, the time complexity of Bubble
Sort (and Comb Sort) is O(n). More precisely, the al-
gorithm makes n comparisons (a single scan through
the array) and 0 movements (the elements already
are in their ideal positions), therefore the complexity
is T (n) = C(n) +M(n) = O(n) +O(1) = O(n).

If any value for shrink can be picked, the best case
of the Comb Sort can be generalized as O(nlogn),
that is, it will not get any better than when shrink =
|array|, since this already leads to the best case pos-
sible. With this, it is possible to conclude that if the
complexity of the best case for the Comb Sort algo-
rithm is Ts, then Ts′ ∈ Ω(Tn), s

′ ̸= n. The proof for
the more generalized can also be found in [3].

3

In Subsection 5.2, I further cover the importance of
the shrink value in the time complexity of the Comb
Sort algorithm.

3 Implementation

Although the implementation of the Comb Sort it-
self is very small, the complete code for this project
(including the functions to execute the tests) is too
extensive to enter in details here. In this paper, I’ll
focus on the general structure of the project and the
Comb Sort.
The whole implementation, except for the code to

generate charts, is written in the C language, since
the compiled program runs very fast and is simple
enough to not required specialized libraries to be eas-
ily implemented.

3.1 Main Function

Starting with the data structures, the program uses
primitive variable types (such as void, int and
float), integer arrays to store the values before and
after the sorting procedure and also an abstract data
type (ADT) called sort.

The sort ADT is used to store the amount of com-
parisons and movements made by the sorting algo-
rithms and is implemented as follows:

1 typedef struct {

2 uint64_t cmp; /* # of comparisons */

3 uint64_t mov; /* # of movements */

4 } sort;

All the sorting algorithms are of type sort, so the
main function can collect the data to print to the
screen. The pipeline of the main function is the fol-
lowing:

1. Load array to be sorted from saved binary file
into a C array

2. Sort the C array using any of the 7 implemented
sorting methods

3. Print number of comparisons and movements to
the screen

Notice that the main function does not print any
time, since the CPU time is externally calculated us-
ing Unix time program. This is important, consider-
ing that time can separate between total, user, and
system time. For this paper, only the user time is
relevant

3.2 Sorting Algorithms

Although Comb Sort is the centerpiece of this paper,
in Subsection 5.1 it’s compared to 6 other algorithms,
so all 7 algorithms were implemented using the same
coding style. The other algorithms are: Insertion
Sort, Selection Sort, Bubble Sort, Heap Sort, Merge
Sort and Quick Sort. The first half of these are O(n2)
algorithms and the last half are O(nlogn) algorithms.
Let’s take a look at the Comb Sort implementa-

tion. The other algorithms follow a very similar pat-
tern and can be found inside the project’s repository
provided.

1 sort comb_sort(int * A, int n)

2 {

3 int sorted = 0, gap = n, i, sm, aux;

4 sort s = { .cmp = 0, .mov = 0};

5

6 while (! sorted) {

7 gap = (int)floor(gap / 1.3);

8 if (gap <= 1) {

9 gap = 1;

10 sorted = 1;

11 }

12

13 for (i = 0; i < n - gap; i++) {

14 sm = gap + i;

15 if (/* cmp */ s.cmp ++, A[i] > A[sm]){

16 aux = A[sm]; /* mov */

17 A[sm] = A[i]; /* mov */

18 A[i] = aux; /* mov */ s.mov += 3;

19 sorted = 0;

20 }

21 }

22 }

23

24 return s;

25 }

The interesting bits of this code are lines 7 to 11,
which compute the gap size for the current iteration
and lines 15 to 20, that swaps the elements being
compared if the first is greater than the second (this
is, of course, where the sorting happens).

4

It’s possible to see the application of the sort ADT
in line 15: there’s a comparison between keys, so the
program increases s.cmp by one. The use of sort is
also visible in line 18, where 3 new key movements
are summed to s.mov.

3.3 Array Generation Tool

In Subsection 3.1 I mentioned the program loads a
binary file into a C array. This file needs to be gener-
ated in the first place, so the Array Generation Tool
can be used.
There is not much to say about this tool, apart

from the fact that it can generate arrays of any size
(up to the signed integer’s maximum size), with a
specific seed and specifics mode and type. Subsection
4.2 briefly describes all the available modes and types.
After the program has generated the entire array

inside RAM, it saves the contents to a binary file that
can be loaded by the main program. There is also a
simple Array Loader Tool that loads and prints the
array to the screen for debugging purposes.

3.4 Comb Sort Shrink Tool

Some of the tests that I ran were to check how dif-
ferent values for the shrink variable affects the per-
formance of the algorithm, so I created a simplified
version of the program exclusively for this purpose. It
runs the Comb Sort algorithm and prints the number
of comparisons, movements and the current shrink
value to the screen.

4 Computational Environment

4.1 Computer Specifications

The environment used to compile the program and
run the tests has the following specifications:

Hardware:

• CPU: 1 Core of AMD EPYC 7551

• RAM: 1GiB DIMM RAM

Software:

• OS: Ubuntu 20.04.4 LTS

• KERNEL: Linux 5.13.0-1018-oracle

• GCC: 9.4.0

4.2 Array Set 1

The arrays generated have the following characteris-
tics:

• 10 seeds for the random number generator

• 4 modes: ordered, inversely ordered, almost or-
dered and random

• 2 set types: only unique elements and unre-
stricted

• 6 sizes: 10, 100, 1000, 10000, 100000 and
1000000 elements

where almost ordered arrays have 1% of their ele-
ments (when possible) at the wrong places.

This set contains the combination of all the above
characteristics, adding up to 10·4·2·6 = 480 different
arrays.

4.3 Array Set 2

In this set, all the 100000 arrays have 10000 randomly
generated elements, with repetition allowed.

5 Tests

5.1 CPU Time, Number of Compar-
isons, and Number of Movements

Here, I compare the Comb Sort algorithm to six other
sorting algorithms: Insertion Sort, Selection Sort,
Bubble Sort, Heap Sort, Merge Sort and Quick Sort.
For these tests, the Array Set 1 (See subsection 4.2)
was utilized.

For all the tests in this section, a shrink value of
1.3 is being used for the Comb Sort algorithm. In
later analyses, I will show how this value affects the

5

performance of the algorithm. The value 1.3 is sug-
gested by Lacey [6] as the best value possible, accord-
ing to their tests.
It is also worth mentioning that the Merge Sort

algorithm is not in-place, as it uses auxiliary arrays
to sort the data. This lets the algorithm stay in the
O(nlogn) time complexity category, but increases its
space complexity to O(n), while every other algo-
rithm implemented has a space complexity of O(1).

This paper exhibits the experimental results com-
paring the algorithms in 3 different collections:

• Almost ordered arrays

• Inversely ordered arrays

• Randomly ordered arrays

where the arrays are composed of unique elements.
After these 3 collections are presented, I also show
the average results including all the arrays from the
Array Set 1.
There is not a substantial difference between the

performance of the algorithms when ordering a fully
ordered or an almost ordered array, and the same
applies to the variants with repeating elements. That
is why these variants are not worth analyzing here.

5.1.1 Almost ordered

Almost ordered arrays are the best case for many
of the implemented algorithms, losing only to fully
ordered arrays. There are exceptions, like the Quick
Sort implementation, which does poorly in both of
these arrays variations.
Figure 2 shows that the average CPU time taken by

the Comb Sort algorithm to sort the arrays is com-
parable to Heap Sort. This same pattern emerges
on the number of Comparisons, depicted in Figure
S1. When looking at the number of movements
made by Comb Sort and Heap Sort, the first algo-
rithm performs a considerably lower number of move-
ments when sorting smaller arrays, but when the size
reaches 104 elements, there is not much difference be-
tween them.
Merge Sort has some trouble sorting the smaller

arrays efficiently, but it’s probably due to population

101 102 103 104 105 106

Array size

10 3

10 2

10 1

100

101

102

103

C
PU

 T
im

e
(s

)

insertion
selection
bubble
heap
merge
quick
comb

Figure 2: Average CPU time taken by each one of
the implemented algorithms to sort almost ordered
arrays of the Array Set 1

bias, since only 10 different seeds were tested for this
specific array setup.

Comb Sort beats all the O(n2) algorithm in this
category, but due to the increased code complex-
ity (including floating point division), it may not be
advisable for rudimentary embedded systems when
sorting smaller arrays, since Insertion Sort fares very
well up to 104 arrays.

If the number of movements is still the most impor-
tant criterion, i.e., sorting arrays where each element
is very big in terms of memory consumption, Selec-
tion Sort is still the best among the tested ones by a
very big margin, as shown in Figure S2.

5.1.2 Inversely Ordered

Inversely ordered arrays is the worst case scenario
for many of the implemented algorithms, including
the Comb Sort. Figure 3 reveals that Comb Sort and
Heap Sort, once again, have very close performance in

6

101 102 103 104 105 106

Array size

10 3

10 2

10 1

100

101

102

103

C
PU

 T
im

e
(s

)

insertion
selection
bubble
heap
merge
quick
comb

Figure 3: Average CPU time taken by each one of
the implemented algorithms to sort inversely ordered
arrays of the Array Set 1

terms of CPU time. Merge Sort has some difficulties
again, for the same reason as before.
In terms of number of comparisons, Comb Sort

does more of them than Heap Sort, but in terms of
movements, it’s the complete opposite, as observed
in Figures S3 and S4. Needless to say, Selection Sort
still makes fewer movements than any of the imple-
mented algorithms.
Quick Sort has a very hard time dealing with in-

versely ordered arrays, so Comb Sort would be a very
good alternative to it in cases where this kind of sit-
uation can show up, but so would be any of the other
efficient algorithms, like Heap Sort and Merge Sort.

5.1.3 Randomly Ordered

Except for systems where the array progressively
(and slowly) grows with new elements, while being
ordered at each step, randomly ordered arrays are
the most common situation to come along, so these

results are arguably the most relevant up to now.
Observing Figure 4, it’s possible to see a clear de-

tachment between the O(n2) and O(nlogn) average
case algorithms. This is especially interesting consid-
ering that the average case for the Comb Sort algo-
rithm is O(n2) (or Ω(n2/2p), regarding a more careful
analysis) and yet, it acts much more like an O(nlogn)
algorithm.

Although it seems to do worse sorting smaller ar-
rays, Comb Sort had the same problem as the Merge
Sort had in past tests. Also, this category of arrays
is favorable for the Quick Sort algorithm, contrary to
the other two categories shown.

In terms of number of comparisons, all the
O(nlogn) algorithms (and Comb Sort) stay very close
to one another (Figure S5), and the same can be said
for the number of movements (Figure S2). Again,
the Selection Sort algorithm is the one that makes
the fewest amount of movements.

101 102 103 104 105 106

Array size

10 3

10 2

10 1

100

101

102

103

104

C
PU

 T
im

e
(s

)

insertion
selection
bubble
heap
merge
quick
comb

Figure 4: Average CPU time taken by each one of
the implemented algorithms to sort randomly ordered
arrays of the Array Set 1

7

5.1.4 All arrays

When considering all the arrays available in the set,
the resulting data is very similar, except for the Quick
Sort algorithm, which ends up having a much worse
overall performance due to the addition of ordered
and inversely ordered arrays. In CPU time, Comb
Sort and Heap Sort are again very close (and so is
Merge Sort), as it’s possible to see in Figure 5.
The verbatim same can be said about the number

of comparisons (Figure S7). Comb Sort is slightly
more successful in respect to the number of move-
ments made than the O(nlogn) algorithm, losing only
to Selection Sort.

101 102 103 104 105 106

Array size

10 3

10 2

10 1

100

101

102

103

C
PU

 T
im

e
(s

)

insertion
selection
bubble
heap
merge
quick
comb

Figure 5: Average CPU time taken by each one of
the implemented algorithms to sort the Array Set 1

5.2 Shrink constant effect

Throughout all previous tests, the value for the
shrink constant was kept as 1.3. As already men-
tioned, this value is the one proposed by Lacey
[6]. They tested different shrink values for sorting

200,000 random arrays with 1000 to 1040 elements
each and empirically found 1.3 as the optimal value,
since it reduced the amount of comparisons made by
the Comb Sort algorithm.

In their paper, they also stated that the number
of comparisons is just about equivalent to the sorting
time, so that is why the number of comparisons was
used to select the best value for the shrink constant.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Shrink

0.0

0.1

0.2

0.3

0.4

0.5

C
PU

 T
im

e
(s

)

Figure 6: Average CPU time taken by Comb Sort,
using different values for shrink, to sort the Array
Set 2

I tested assorted values (from 1.05 to 2.00 in steps
of 0.05) for shrink running the Comb Sort algorithm
for 10,000 random arrays with 10,000 elements each
and detected that, in fact, 1.3 is the best value in
terms of number of comparisons, but it does not di-
rectly correlate to the CPU time taken. Using the
CPU time as the measure, instead of number of com-
parisons, the chosen value for shrink would be 1.2 (or
1.25 if the number of movements was the criterion).

Table 1 reports these measurements up to
shrink = 1.5, since after that, the value explodes.

8

Figure 6 shows the average CPU time plot, Figure
S9 illustrates the average number of comparisons, and
Figure S10, the average number of movements, all of
them up to shrink = 2.0.

Shrink CPU time # comps # moves
1.05 0.040487 2849504 465103
1.10 0.027313 1615526 261087
1.15 0.024935 1244211 240178
1.20 0.025182 1031265 229554
1.25 0.037266 977341 228487
1.30 0.067407 950057 239405
1.35 0.107795 1099693 261955
1.40 0.164257 3407378 389446
1.45 0.237102 9742929 763954
1.50 0.307125 16378272 1220444

Table 1: Average CPU time taken, average number of
comparisons and average number of movements made
by Comb Sort, using different values for shrink, to
sort the Array Set 2

6 Conclusion

Comb Sort takes the foundation of the Bubble Sort
algorithm and combines with the improvements Shell
Sort makes to Insertion Sort, bringing forth a more
efficient algorithm that competes closely to the more
known O(nlogn) sorting algorithms.
Although the algorithm is rather simple to imple-

ment, it is challenging to analyze deeply, due to the
nature of how the elements are compared. The gap
value makes it problematic to find a consistent re-
lation between the iterations and the closeness of
sorting completion, since it is reduced by a constant
known as shrink, which is, typically, a value greater
than 1 and smaller than 2.
Using the data collected from the experimental

analyses, the Comb Sort algorithm performs very
closely to the Heap Sort. This makes Comb Sort
a questionable choice, since Heap Sort has O(nlogn)
complexity for the best, average and worst case sce-
narios, while Comb can perform as poorly as the Bub-
ble Sort algorithm (O(n2)) at times.

Comb Sort also performs similarly to the Merge
Sort and Quick Sort algorithms. It is a better option
than Merge Sort when space complexity is a concern,
if stability is dispensable (since Merge Sort is stable,
Comb is not). It is a better pick than Quick Sort in
the worst case scenarios, but not in the average ones.

The value for the shrink constant is complicated
to analyze. The literature indicates that 1.3 might
be a good choice, since it is the one that leads to the
fewest amount of comparisons. Even though this is
corroborated in this paper, the problem arises when
the CPU time is taken into account. There is not a
perfect match between them, since in my experimen-
tal results, the lowest average CPU time taken to sort
is acquired by choosing shrink = 1.2.

In general, the Comb Sort algorithm does the job of
sorting relatively fine, but it does not supply anything
new to the table that more well-researched algorithms
(with more specialized variants), like the Heap Sort,
do. This makes its use-case limited to theoretical
studies, as there are better alternatives.

References

[1] Owen Astrachan. Bubble sort: an archaeologi-
cal algorithmic analysis. ACM Sigcse Bulletin,
35(1):1–5, 2003.

[2] Kenneth E. Batcher. Sorting networks and their
applications. In AFIPS Spring Joint Comput-
ing Conference, volume 32 of AFIPS Conference
Proceedings, pages 307–314. Thomson Book Com-
pany, Washington D.C., 1968.

[3] Bronislava Brejová. Analyzing variants of shell-
sort. Information Processing Letters, 79(5):223–
227, 2001.

[4] Wlodzimierz Dobosiewicz. An efficient variation
of bubble sort. Information Processing Letters,
11(1):5–6, 1980.

[5] Donald E Knuth. Sorting and searching. 1973.

[6] Stephen Lacey and Richard Box. A fast, easy
sort. Byte, 16(4):315–ff, 1991.

9

Supplementary Information

i

101 102 103 104 105 106

Array size

102

104

106

108

1010

1012

#
 C

om
pa

ri
so

ns

insertion
selection
bubble
heap
merge
quick
comb

Figure S1: Average number of comparisons made by each one of the implemented algorithms to sort almost
ordered arrays of the Array Set 1

ii

101 102 103 104 105 106

Array size

102

104

106

108

1010

#
 M

ov
em

en
ts

insertion
selection
bubble
heap
merge
quick
comb

Figure S2: Average number of movements made by each one of the implemented algorithms to sort almost
ordered arrays of the Array Set 1

iii

101 102 103 104 105 106

Array size

103

105

107

109

1011

#
 C

om
pa

ri
so

ns

insertion
selection
bubble
heap
merge
quick
comb

Figure S3: Average number of comparisons made by each one of the implemented algorithms to sort inversely
ordered arrays of the Array Set 1

iv

101 102 103 104 105 106

Array size

102

104

106

108

1010

1012

#
 M

ov
em

en
ts

insertion
selection
bubble
heap
merge
quick
comb

Figure S4: Average number of movements made by each one of the implemented algorithms to sort inversely
ordered arrays of the Array Set 1

v

101 102 103 104 105 106

Array size

102

104

106

108

1010

1012

#
 C

om
pa

ri
so

ns

insertion
selection
bubble
heap
merge
quick
comb

Figure S5: Average number of comparisons made by each one of the implemented algorithms to sort randomly
ordered arrays of the Array Set 1

vi

101 102 103 104 105 106

Array size

102

104

106

108

1010

1012

#
 M

ov
em

en
ts

insertion
selection
bubble
heap
merge
quick
comb

Figure S6: Average number of movements made by each one of the implemented algorithms to sort randomly
ordered arrays of the Array Set 1

vii

101 102 103 104 105 106

Array size

102

104

106

108

1010

1012

#
 C

om
pa

ri
so

ns

insertion
selection
bubble
heap
merge
quick
comb

Figure S7: Average number of comparisons made by each one of the implemented algorithms to sort the
Array Set 1

viii

101 102 103 104 105 106

Array size

102

104

106

108

1010

1012

#
 M

ov
em

en
ts

insertion
selection
bubble
heap
merge
quick
comb

Figure S8: Average number of movements made by each one of the implemented algorithms to sort the
Array Set 1

ix

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Shrink

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

#
 C

om
pa

ri
so

ns

1e7

Figure S9: Average number of comparisons made by Comb Sort, using different values for shrink, to sort
the Array Set 2

x

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Shrink

0

1

2

3

4

5

#
 M

ov
em

en
ts

1e6

Figure S10: Average number of movements made by Comb Sort, using different values for shrink, to sort
the Array Set 2

The complete source code for the project can be found here:
https://github.com/fvcalderan/CombSort analysis

xi

https://github.com/fvcalderan/CombSort_analysis

	Introduction
	Comb Sort
	Worst Case Scenario
	Average Case Scenario
	Best Case Scenario

	Implementation
	Main Function
	Sorting Algorithms
	Array Generation Tool
	Comb Sort Shrink Tool

	Computational Environment
	Computer Specifications
	Array Set 1
	Array Set 2

	Tests
	CPU Time, Number of Comparisons, and Number of Movements
	Almost ordered
	Inversely Ordered
	Randomly Ordered
	All arrays

	Shrink constant effect

	Conclusion

