
Cost-effective Arduino-controlled Flight Simulator
2004/X General Aviation Radio Stack

1st Felipe Vaiano Calderan
Science and Technology Department

Federal University Of São Paulo
São José dos Campos, Brazil

fvcalderan@gmail.com

Abstract—Flight simulation has been present in civil and
military training for decades now. With them, pilots and student
pilots can practice from simple tasks, such as taking off and land-
ing the plane, to rare and complex situations, like very aggressive
weather conditions and many types of failures. While dedicated
flight-instruction institutions and airlines have the means to buy
or build sophisticated hardware for flight simulation, hobbyists
and aspiring pilots typically do not have the money to invest
in such. Taking into account the demand for more pilots, it
is essential to increase the accessibility of flight simulation for
everyone, so that potential pilots can develop their skills and
love for aviation. With this in mind, here it is proposed a very
cost-effective solution to control, via dedicated hardware using
Arduino, the radio stack, and autopilot system of most General
Aviation aircraft in Microsoft Flight Simulator 2004 and X (with
minor tweaks).

Index Terms—cost-effective, embedded systems, arduino, flight
simulation, radio stack, autopilot

I. INTRODUCTION

When the term flight simulator is used today, it refers to
a combination of systems that allow people to have a digital
experience of controlling an aircraft, which would be similar
to the real life counterpart. Although it may not sound correct,
flight simulators are older than the digital age. The first well-
known flight simulator is the Link Trainer (Figure 1), from
1929 [1]. It allowed pilots to operate aircraft-like controls and
see the effect through the simulated flight instruments (which
is still very relevant today [2]), built using pumps, valves, and
bellows.

For the most part, in the early stages of simulation, the focus
was more military training, but in the 1950s, airlines were
already buying considerable amounts of simulators to train and
improve the skill of their pilots. Not only that, but simulators
were already being used to check aircraft performance before
it left the ground [3], which indicates that there was good
accuracy, even 60 to 70 years ago.

Of course, as the technology advanced, so did the simulators
and in early 1983, Bruce Artwick created the Sublogic Flight
Simulator, which used non-cockpit hardware (everything on-
screen) [4]. At this point, digital computers were already
popular for simulation purposes, as they could compute very
sophisticated models and fit in smaller places than the old
analog computers.

In general, from this point onwards, simulators became
very important tools to improve flight safety while reducing

Fig. 1. Link Aviation flight simulator, by Robert Yarnall Richie and DeGolyer
Library, Southern Methodist University, No restrictions, via Wikimedia Com-
mons.

training costs. Today, they are not only essential to military
organization and civil airlines, but also to aircraft makers, to
test the physics and behaviors of the plane, before it even
exists. With this, standardization of these tools took place
throughout the world and tend to become progressively more
popular [5].

By 2018, modern professional-grade civil simulator (Fig-
ure 2) fleet neared 1300 units [6] and the competition for
simulation hardware, software, and training centers became
fiercer, with companies like Boeing and Airbus competing with
smaller ones for the market [7]. Unfortunately, few people
have access to these high-level simulators, which can be
detrimental to the arousal of the curiosity of many people
who could develop love and great skills for aviation, therefore
negatively affecting the amount of potential new pilots.

This fact and the existence of home-use flight simulators,
like the Microsoft Flight Simulator1 and Laminar Research X-
Plane2 series, prompted the scientific and enthusiastic commu-
nity to create accessible alternatives to full-size professional-
grade simulators [8]. Of course, one could always use a
keyboard and mouse to control the aircraft in home-use flight
simulators, but this results in a subpar experience, even for
hobby purposes.

1https://www.flightsimulator.com/
2https://www.x-plane.com/

Fig. 2. Baltic Aviation Academy Airbus B737 Full Flight Simulator (FFS)
in Vilnius, by Tadas1980, Public domain, via Wikimedia Commons.

The system proposed here provides this community with
a very cost-effective dedicated-hardware way to control the
radio stack and autopilot systems of most small General
Aviation (GA) aircraft (with emphasis in those without glass
cockpits [9]). It is built using an Arduino Uno (but many other
Arduino/Genuino boards could be used in its place) and cheap
electronic components.

The system was particularly modeled to operate many of
Microsoft Flight Simulator 2004’s (FS9) steam gauged GA
plane’s stacks and implements most of the functionality. It is
noteworthy that it is extensible and can be improved to support
bigger aircraft features and more realistic input methods. The
tests using the device in simulated flights show satisfactory
performance (mainly measured in usability), specially consid-
ering the low price-point and extensibility.

II. HOME FLIGHT SIMULATOR SOFTWARE TODAY

Simulators were very popular throughout the 1990s and
beginning of the XXI century, when acceptable realism in
computer graphics and physics was possible for the first time.
Of course, the launch of new Microsoft Flight Simulator
games have a big positive impact on the genre’s popularity.
This explains why 2004 and 2006 (launch years of FS9 and
FSX, respectively) were very active years for the community.
Unfortunately, after 2006, Microsoft went 14 years without
publishing a new title and this affected the popularity dramat-
ically, a streak ended by the launch of Flight Simulator 2020,
which revived the interest in the genre. Figure 3 shows the
Google Trends for the search term “flight simulator”, which
reflects the popularity of flight simulators on the internet.

Looking at the trends for other simulators, such as “X-
Plane”, “Aerofly” and “Prepar3D”, it is possible to see that,
although they compete with the Microsoft product, they don’t
really have a significant market share. It is also worth men-
tioning that at the time of this publication, FS2020 has almost
triple the reviews (close to 45000)3 on Steam compared to X-
Plane 11, which is 3 years older4. Figure 4 shows the Google
Trends for different simulators.

3https://store.steampowered.com/app/1250410
4https://store.steampowered.com/app/269950

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

100

200

300

400

500

600

In
te

re
st

Google Trends for the term "flight simulator"

Fig. 3. Google Trends for the search term “flight simulator”. The genre
became niche in the last years, but 2020 shows a resurgence in interest, with
the launch of Microsoft Flight Simulator 2020 (FS2020). The Interest axis
represents the global search interest relative to the highest point on the chart.
For instance, 100 is peak popularity, while 50 is half of it..

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

0

100

200

300

400

500

600

In
te

re
st

Google Trends for different simulators
Microsoft Flight Simulator
X-Plane
Aerofly
Prepar3D

Fig. 4. Google Trends for the games (debatable classification) “Microsoft
Flight Simulator”, “X-Plane”, “Aerofly” and “Prepar3D” reveals that the
Microsoft product is ahead of the competition. The Interest axis represents the
global search interest relative to the highest point on the chart. For instance,
100 is peak popularity, while 50 is half of it.

It is clear that FS2020 is able to cater not only to advanced
simulation users, but also to novice and gamers in general.
This is done by adding missions and competitive elements
to the software, attempting to turn it into a game [10],
while maintaining respectable physics and the characteristics
expected from a simulator. Also, it is the only available
simulator for console, which further increases its reach for
the casual users.

This is very important, because, although not everyone that
tries a simulator will develop a passion for aviation, some
will, which can lead to potential new pilots. This is the public
that needs the tools to have a more simulator-like experience,
while keeping down the costs. Generally, these tools fall under
the category of Human Interface Devices (HID) [11]. Some
of them are: joysticks, rudder pedals, power quadrants, radio
stacks, eye trackers, and virtual reality goggles.

Unfortunately, FS2020 cost and hardware requirements can
be prohibitive to many users, therefore, this work takes a step
back and develops for FS9 and FSX. FS9 is now considered
abandonware and is available in digital museums for preser-
vation purposes, while FSX is still sold to this day, with over
20000 reviews on Steam5. This also guarantees a work that is
easily reproducible. Furthermore, it can be modified to work
with other simulators, the only requirement is that there must
be a way to read from/write to the simulator and perform serial
communication with the device.

III. RELATED WORKS

Although there are many related works, this section focuses
on some more recent works that study varied topics surround-
ing HID development for flight simulators.

In 2015, Aslandere, Dreyer and Pankratz [12] developed a
way for a person to interact with an aircraft’s cockpit using VR
goggles and hand motion controllers. Essentially, the hands
are tracked and represented in the virtual world as a hand 3D
object, then this object has its collision box checked against
the collision boxes of switches, knobs, and other cockpit
items. If an adequate collision happened, the respective item
is toggled/changed. Even though VR is still a very expensive
item in many countries, it already massively reduces the cost
to obtain realism in a simulator.

Still in the same year, Lee and Kwon [13] developed an
Arduino PCB module for large commercial jet simulation. It
basically does in a much larger scale and complexity what
this work proposes: an intermediate hardware that enables the
communication between the user and the simulator.

Moving forward 3 years, in 2018 Benedikovic, Hamernik
and Brozek [14] presented Arduino as an interlink between
arbitrary Input/Output (I/O) devices. This interlink is low-
latency and fault-tolerant, which shows that the board is well
suited for the job. They also argue that combining this fact
with the very low cost of an Arduino, it may as well be the
best solution for small and medium-sized projects, which can,
of course, benefit hobbyists and even simulation enthusiasts.

5https://store.steampowered.com/app/314160

Also in 2018, Redei, Dascalu and Harris [15] built a frame-
work (on top of another study by Redei and Dascalu [16]) for
virtualizing joystick controls, where they tackle the problem
of two pilots concurrently sending converging or diverging
inputs to one single plane. This conflict can happen in real
life, in planes with a pilot and a copilot. The authors evaluate
different conflict resolution techniques and are able to provide
a seamless experience for standard one joystick operation
and weight the input of different joysticks, depending on the
situation, to resolve conflicts. The project was also built using
Arduino as the core system.

Going another 3 years into the future, Othman et al. [17]
built a reasonable and affordable flight simulation device. It
consists of a structure made of metal and wood containing
a base and a bench, with 2 yokes (the aircraft’s ailerons
and elevator controller) mounted. Each yoke’s movements
are captured by two potentiometers that are connected to
yet another Arduino, this way it is possible to control the
aircraft’s pitch and roll. To satisfy the most GA aircraft’s
control surfaces, they are missing the rudder (specially), flaps
and possibly the speedbrakes controllers.

Finally, in 2022 Suarez [18] published his undergraduate
Thesis titled HID interface program based in Arduino for
connecting flying simulator controls to a PC. This work
uses an Arduino to translate physical inputs into a Windows
compatible HID device that is able to interact with flight
simulators. It basically provides a blank canvas to build any
sort of controller out of the core device, having the possibility
to become a cost-effective way to build dedicated hardware
for simulation.

As it is possible to notice, the use of Arduinos is very
common due to 3 main reasons: they are cheap, responsive,
and reliable. Also, there are multiple versions of Arduinos,
and they are programmed very similarly, so it is possible to
adapt or extend the code to a bigger Arduino board, with a
more powerful microcontroller to deal with bigger projects.
This work will be no different, as it also uses an Arduino
Uno (Figure 5) to intermediate the communication between
the human and the simulation running in a computer.

Fig. 5. Arduino Uno board, by SparkFun Electronics from Boulder, USA,
CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia
Commons

IV. RADIO STACK

Fig. 6. Microsoft Flight Simulator 2004’s generic radio stack. It is modeled
after Bendix/King Silver avionics system.

The device proposed in this work controls most of the
FS9’s Cessna C172SP Skyhawk’s, Cessna C182S Skylane’s,
Cessna C208 Caravan Amphibian’s, Cessna C208B Grand
Caravan’s and Mooney Bravo’s radio stack, which is modeled
after Bendix/King Silver avionics system. Figure 6 shows a
screenshot of the in-game stack.

Going from top to bottom of the radio stack, ignoring the
Morse code activators (first row of buttons), we have the
following modules:

• Communication 1 (COMM1) and Navigation 1 (NAV1)
frequency selectors. COMM 1 chooses which frequency
to hear from/communicate to using the radio. NAV1
picks which Very High Frequency Omnidirectional Range
(VOR) station the Course Deviation Indicator (CDI)
and Instrument Landing System (ILS) glide slope (if
supported) gauge will be tracking.

• COMM2 and NAV2 frequency selectors. Same function-
ality as COMM1 and NAV1, but for a different radio
channel and CDI/ILS gauge.

• Automatic Direction Finder (ADF) frequency selector.
Chooses which Non-Directional Beacon (NDB) station
to track with the ADF gauge.

• Distance Measuring Equipment (DME). If NAV1 or
NAV2 is pointing to a Doppler VOR (D-VOR) station
instead of a simple VOR, this instrument shows the
distance (in Nautical Miles) the aircraft is to the station
and the speed (in Knots) in which it is moving. A switch
chooses which NAV to pick up.

• Transponder (XPDR). Sets the Squawk Code for identi-
fication and flight following.

• Autopilot. Controls the aircraft’s autopilot system. This
model supports the basics, such as heading, altitude and
vertical speed hold, as well as navigation and approach
following. It is worth noting that there are two extra
controls of the autopilot system that are not in this stack:
the heading selector and GPS/NAV switch, which are
positioned in different parts of the cockpit.

V. HARDWARE ASSEMBLY

A. Parts

The complete device is composed of 3 essential and 1
optional part:

Arduino Uno board (Figure 5)
It is the brain of the system and has as its core function

to intermediate the communication between the human and
the simulator. It reads the physical inputs, then sends them to
the simulator, which will change the state of the world. Not
only that, but also reads the simulation state and presents the
information to the user.

LCD Keypad Shield (Figure 7)
This shield contains 6 push-buttons, of which 5 are cus-

tomizable and 1 is a reset button, and also a 16 by 2
Liquid-Crystal Display (LCD). Although the shield is highly
convenient for this device, it is not needed and the components
can be individually plugged in the board, with minor changes
to the code.

Fig. 7. LCD Keypad Shield for Arduino. Contains 6 buttons and an LCD.

USB type B to USB type A cable (Figure 8)
The Universal Serial Bus (USB) cable lets the Arduino

connect to the computer in Serial mode, which enables the

bidirectional data transmission between the devices. This cable
can be swapped by any other alternative that permits the same
kind of communication.

Fig. 8. USB type B to USB type A cable for the communication between
the Arduino board and the computer.

3D printed case for LCD Keypad (Figure 9)
This whole item is optional, as it can not only be replaced,

but also completely ignored. The case’s main functionality is to
be a rudimentary protection against dust and liquids. It makes
the device as more visually appealing, too.

Fig. 9. 3D printed case to accommodate an Arduino with a LCD Keypad
shield connected

B. Assembly

The assembly itself is very simple: first plug the LCD
Keypad on top of the Arduino Uno board, as show in Figure
10. Then, fix the ensemble inside the 3D printed case, just like
depicted in Figure 11. Finally, close the case by screwing its
top on its base, the same way as shown in Figure 12.

It is very important that the case has a hole for the USB
cable to be plugged in the Arduino board. The power supply
hole in the case used here is optional, since the computer’s
USB port should be able to supply enough power.

Fig. 10. LCD Keypad Shield plugged on top of Arduino Uno board

Fig. 11. Arduino and Shield fixed inside the 3D printed case

Fig. 12. 3D printed case closed

C. LCD Keypad connections

Although it is convenient to use the LCD Keypad shield,
it can be bypassed by adequately connecting the equivalent
components directly to the Arduino board. Figure 13 shows
how to perform this connection. The complete schematic of
the shield would also contain pass-through connectors between
the board and the shield. These have been omitted in the figure,
since they would not be useful in this particular case.

The buttons array (excluding the reset) was built in a
way to occupy a single analog port, instead of 5 digital
ports. Although this small port optimization is optional, it is
important to keep in mind that changing to the digital ports
alternative leads to necessary small changes in the code.

Another point to be made is that the actual LCD used in the
particular shield of this work is the TC1602, not HD44780,
which includes extra LED ports that are taken care of by the
shield itself. These are not essential for the core interpretation
of the circuit and that is why, for simplification purposes, the
figure shows an HD44780.

Finally, the microcontroller pins used by the LCD are not
the typical ones used in many Arduino examples (12, 11, 5,

D7
D6
D5
D4

D9 D8

RST

Reset

Select

Left

Down

Up

Right

A0

+5V

2 k�

330 �

620 �

1 k�

3.3 k� 10 k�

D0
D1
D2
D3
D4
D5
D6
D7

EN R/W RS GND V0 VDD

HD44780

Fig. 13. LCD Keypad Shield’s most important components (buttons and LCD
screen) equivalent circuit connected to the ATmega328.

4, 3, 2), but rather (8, 9, 4, 5, 6, 7). Changing this, of course,
means extra changes in the code.

VI. SOFTWARE ARCHITECTURE

To facilitate the communication between the Arduino and
the Flight Simulator, a third party program called FSUIPC6,
by Pete and John Dowson [19], is used. The version necessary
for FS9 is no longer supported, therefore it is free of charge.
This software is able to perform serial communication and
can read from/write to the correct memory addresses from
the flight simulator to access/modify most of the information
available.

This means that the core architecture is composed by 3
main parts: the Arduino program, FSUIPC and FS9, where
the first two communicate by serial and the last two, by
sharing information stored inside the Random Access Memory
(RAM). Figure 14 illustrates the described system.

Arduino FSUIPC FS9Serial RAM
Offsets

Fig. 14. Diagram representing how the communication happens between the
Arduino and the Flight Simulator. FSUIPC is a software by Pete and John
Dowson [19] used to facilitate the communication.

The Arduino is responsible to send the pushed buttons and
current operation mode to FSUIPC and, in return, receives the
values that should be displayed on-screen, given the operation
mode and actual state of the simulation universe. A button
press causes can cause the state to change, which immediately
reflects in the information being received from FSUIPC, giving
the impression that the values are being locally processed by
the Arduino.

For instance, supposing the system is in mode 0 (would be
COMM1 frequency MHz edit enabled), value change button

6http://www.fsuipc.com/

presses in the Arduino lead to information being sent to
FSUIPC that indicates the MHz of COMM1 should increase
or decrease by 1. FSUIPC, then, send the corresponding
command to FS9, which changes the state of the simulation.
FSUIPC reads the changed state and, since the operation mode
is 0, sends the COMM1 current frequency back to Arduino,
which displays it in the LCD.

A FSUIPC program is a LUA script [20]. To inform
FSUIPC which control should be manipulated inside the
simulator, the programmer must inform the control number.
Table I list all the control numbers used in this work to
manipulate COMM1. A complete list of supported controls
can be found in FSUIPC documentation.

TABLE I
CONTROL NUMBERS TO MANIPULATE COMM1 RADIO FREQUENCIES

Number Control description
65636 COMM1 Mhz range Down
65637 COMM1 Mhz range Up
65638 COMM1 Khz range Down
65639 COMM1 Khz range Up
66372 COMM1 Standby Frequency Swap

To read from/write to FS9 memory addresses, FSUIPC
needs to be informed of the memory offset to be used. The
software provides functions to read various types of data,
but the values obtained from the memory addresses may not
immediately resemble what is being shown in the simulator.
This leads to some calculations having to be made to send
Arduino a properly formatted value to be shown. For instance,
Equation 1 shows how to properly format the autopilot altitude
hold value, so that it is the same in the simulator and in the
LCD (ignoring the zeros to the left that must be occasionally
added).

f(x) = 100

⌊
x

1997600
+

1

2

⌋
(1)

Table II shows the offsets used to read various autopilot
values. A complete list of all the possible offsets can be
obtained in the software’s documentation.

The proposed device uses a total of 50 control numbers and
22 memory offsets. Since FSUIPC provides many more, it is

TABLE II
MEMORY OFFSET FOR VARIOUS AUTOPILOT VALUES

Offset (Hex) Value description
0x07BC Master state
0x07C4 Nav hold state
0x07C8 Heading hold state
0x07CC Heading value
0x07D0 Altitude hold state
0x07D4 Altitude value
0x07EC Vertical speed hold state*
0x07F2 Vertical speed value
0x07FC Approach hold state
0x132C Nav mode (NAV or GPS)

*unavailable for FS9, therefore unused here.

possible to extend this device to control many other parts of
the plane and read many other values. An example of possible
extension would be to include visualizers for the various flight
instruments present in an aircraft, such as the six-pack [21].

VII. DEVICE USAGE

Here it will be presented the device’s interface and how to
use it. As already mentioned, the device has 5 programmable
buttons, 1 reset button and a 16 by 2 LCD. This means that all
the interface must take this very limited set of resources into
account. A very good upgrade to the current device, without
much additional cost, would be to use a 20 by 4 LCD and
more buttons.

To work with the limitations, the device remaps buttons
differently (except for the left and right buttons), depending
on the operation mode. The way the operation modes work is
the following: for each item in the radio stack, an exclusive
interface screen was developed. For each screen, there can be
multiple operation modes, for instance, the ADF screen has
4 operation modes, one for each digit of the frequency that
can be changed. For each one of the ADF’s screen operation
mode, the up and down button have a unique functionality,
which would be to change the corresponding digit.

Some screens behave the same, in respect to the intuitive-
ness of what each button will do, but some work in a quite
different manner. A summary of how to operate the device is
now presented. All LCD screens show simulation data for a
recently spawned Cessna C172SP Skyhawk in Seattle-Tacoma
airport, in FS9, without any changes or movement.

A. COMMs and NAVS

Fig. 15. Graphical representation of the LCD screen when in COMM1
operation modes

Everything here applies to COM1, COM2, NAV1 and NAV2
screens, since they are identically formatted. The left and right
button change operation mode, where left subtracts 1 and right
adds 1 to the operation mode value. Up and down, increase and
decrease, respectively, from MHz or KHz range (depending on
the operation mode). Select (the button on the extreme left)
swaps the current frequency by the standby one.

To choose between MHz and KHz, the user must change
the operation mode. So if the operation mode is 0, up and
down change the MHz range. If the right button is pressed,
the operation mode is changed to 1 and now the up and down
buttons change the KHz range. Pressing right again changes
the mode to 2, which would change the screen to COM2 MHz
mode, and so on. To aid the user, the LCD cursor blinks before

the “MHz” or “KHz” text, depending on the mode. Figure 15
shows the COM1 screen.

B. ADF and XPDR

Fig. 16. Graphical representation of the LCD screen when in ADF operation
modes

The ADF and XPDR screens behave the same. As previ-
ously mentioned, the left and right buttons are not remapped
and always change mode (this holds true for all the following
cases, therefore will not be further mentioned). In this case,
changing the mode, means changing a different digit of the
ADF/XPDR systems. Therefore, if the mode is 8, up and down
adds and subtracts, respectively, 1 to/from the first ADF digit,
whereas 9 deals with the second one.

The select button in this screen jumps to the next screen,
independent of the digit the user is currently on. On the ADF
screen, this means that a select button press always change
the operation mode to 12 (DME) and, on XPDR screen, to 17
(Autopilot altitude). This is basically a shortcut, so the user do
not have to go through all the digits, if they do not want to. To
help the user know which ADF/XPDR digit is being edited,
a blinking cursor appears below the current digit. Figure 16
shows the ADF screen.

C. DME

Fig. 17. Graphical representation of the LCD screen when in DME operation
mode

The DME screen is very simple (as are all the following
ones). It has a single operation mode: up, down and select
buttons swap the DME being monitored by the radio stack.
If it is monitoring DME number 1, #1 will show, alongside
the distance in nm and the relative speed in KT. Pressing an
action button (up, down or select) will change the DME being
monitored to #2, with the respective information also being
shown for this one.

In this mode, there is a cursor blinking before the number
of the DME being monitored, as a reference for the user to
know what will be changed. Figure 17 depicts the screen in
DME operation mode.

D. Autopilot Altitude and Heading Hold

Fig. 18. Graphical representation of the LCD screen when in Autopilot
Altitude operation mode

These two modes work the exact same, where there is one
operation mode for each. Considering the altitude screen, up
and down buttons increase and decrease, respectively, the hold
altitude of the autopilot by 100 and the select button activate
or deactivate the hold, changing the text in the screen from
OFF to ON and vice-versa.

In the case of the heading hold, up and down buttons change
the heading by 1 degree, and select activates or deactivates the
hold. It is noteworthy that the heading adjust knob is not in
the radio stack, but rather mounted together with the Heading
Indicator. Since it directly affects the autopilot system, the
proposed device still lets the user manipulate this dial directly.

Both screens have a blinking cursor before the numbers, but
since they work in a single operation mode, there can be no
cursor blinking before the HLD or OFF text. Figure 18 shows
the autopilot altitude screen.

E. Autopilot Vertical Speed

Fig. 19. Graphical representation of the LCD screen when in Autopilot
Vertical Speed operation mode

This mode works identically to Autopilot Altitude and
Heading hold modes. The exception is that the select button
does nothing, since FS9 does not support Vertical Speed
hold toggle, as it is automatically activated, depending on the
current aircraft altitude and current autopilot target altitude,
if altitude hold is enabled. This can be programmed to work
properly in FSX and Prepar3D.

F. Autopilot Navigation Mode

In this operation mode, any action button will change
the navigation mode from NAV to GPS or vice-versa. The
navigation mode decides if the autopilot should (if Navigation
Hold is enabled) follow a configured VOR station, typically
the one set in NAV1, or the programmed GPS route. The

Fig. 20. Graphical representation of the LCD screen when in Autopilot
Navigation Mode operation mode

button to switch the modes is not in the radio stack, but
rather elsewhere in the plane. Since it still directly changes
the autopilot behavior, the proposed device has the switch
functionality built-in.

A blinking cursor should appear to the left of the NAV or
GPS text, indicating, to the user, what is being edited in this
operation mode. Figure 20 reveals the Navigation Mode screen
in the LCD.

G. Autopilot Master, NAV hold and APR hold

Fig. 21. Graphical representation of the LCD screen when in Autopilot Master
operation mode

Autopilot Master, Navigation hold and Approach hold
screens work in a very simple manner: any action button will
turn on or off the screen’s corresponding functionality. When
the navigation hold is enabled, the autopilot will follow either
NAV1 or GPS, depending on the navigation mode. When the
approach hold is enabled, the autopilot will follow the set ILS
direction and glideslope (typically set on NAV1). Finally, the
autopilot master control turns on or off the whole autopilot
system.

All of these screens have a blinking cursor before the
ON/HLD or OFF text, to demonstrate that action buttons will
activate or deactivate the functionality. Figure 21 shows the
autopilot master screen, which is the last operation mode, so
it can be easily accessed from operation mode 0, by pressing
left (cycles back to 23, which is the master mode number).

H. Operation Modes table

Since there are many screens, operation modes and ac-
tion buttons functionalities, Table III contains a thorough
description of what each action button does for every possible
operation mode.

TABLE III
ACTION BUTTONS FUNCTIONALITIES FOR EACH POSSIBLE OPERATION

MODE

OP
Mode

Buttons
Select Up Down

00

Swap current
and standby
frequencies

+ COMM 1 Mhz - COMM 1 MHz
01 + COMM 1 KHz - COMM 1 KHz
02 + COMM 2 Mhz - COMM 2 MHz
03 + COMM 2 KHz - COMM 2 KHz
04 + NAV 1 Mhz - NAV 1 MHz
05 + NAV 1 KHz - NAV 1 KHz
06 + NAV 2 Mhz - NAV 2 MHz
07 + NAV 2 KHz - NAV 2 KHz
08

Skip ADF
editing

+ ADF 100ths - ADF 100ths
09 + ADF 10ths - ADF 10ths
10 + ADF units - ADF units
11 + ADF decimals - ADF decimals
12 DME Swap
13

Skip XPDR
editing

+ XPDR 1000ths - XPDR 1000ths
14 + XPDR 100ths - XPDR 100ths
15 + XPDR 10ths - XPDR 10ths
16 + XPDR units - XPDR units
17 Toggle ALT hold + target altitude - target altitude
18 + vertical speed - vertical speed
19 Toggle HDG hold + heading angle - heading angle
20 Toggle navigation hold
21 Toggle approach hold
22 Toggle navigation mode (NAV or GPS)
23 Toggle autopilot master

VIII. IN-SIMULATOR GUI
After installing FSUIPC, copying fsradio.lua to the Mod-

ules folder and configuring a way to start the device’s LUA
script, in FSUIPC settings (Figure 22), start it. The first time,
a window should appear indicating that it could not open
Arduino’s COM port (Figure 23. After that, a screen asking
for the COM port to read the Arduino from will appear (Figure
24). Inform the port and if everything is correct, a new success
message will show up (Figure 25), otherwise, a new attempt
to start the system will have to be made.

Fig. 22. FSUIPC configuration screen. To use the proposed device, it is
necessary to initialize its LUA script, this can be done by binding it to a
key, as shown here. See FSUIPC’s manual for more details on how to start a
script.

Fig. 23. Window showing an error, which tells the user it could not open
Arduino’s COM port.

Fig. 24. Window asking for the COM port where FSUIPC can find the
Arduino

Fig. 25. Window telling the user that the Arduino has been found and is,
now, communicating with FSUIPC.

This Graphical User Interface (GUI) is made using
FSUIPC’s display API, which tells FS9 to show a window with
contents to the user. It is a very basic GUI, but considering
the basic nature of the proposed device’s functionalities and
that most of the time the device will be using its own screen
to communicate with the user, it is enough.

IX. TESTS

The device was thoroughly tested, in relation to its capabil-
ities, and various pieces of information about its strong and
weak points were collected. Since it is a peripheral intended
to be operated by humans, the evaluation of its performance
can be objective in some cases, but subjective in others. The
user experience may vary.

A. Computational environment

• CPU: Intel(R) Core(TM) i5-10210U
• RAM: 2x4GB LPDDR3
• GPU: Intel(R) UHD Graphics 620
• OS: Windows 11 Home Single Language 22H2
• Simulator: Flight Simulator 2004: A Century Of Flight

B. Objective results

The device works as intended, as it successfully performs
all the operations it was designed to be able to, without
errors, if its limitations are respected. It was observed that

it can fail to register very fast button presses, due to the very
primitive debounce-avoidance system in place, which can be
much improved in future versions.

Although failing to register a button press is not ideal, it
is not catastrophic, since the user can see if the button press
reflected in the simulator, by looking at the device’s and/or
simulator’s screens.

A video showing the testing of many of the device’s
features can be found in the work’s GitHub repository, in the
README.md file or inside the main page of the repository:
https://github.com/fvcalderan/fsradio.

The main positive points about using the device are its price,
compactness, and extensibility. The price is how much an
Arduino plus the components to build the circuit represented
in Figure 13 cost, which would be below US$50,00, in the
United States, as of January 2023. It is a small box capable of
controlling the whole radio stack and can be programmed to
deal with even more parts of the aircraft, without any change
in size,

C. Subjective results

Although a 16 by 2 LCD and 5 programmable buttons were
enough to be able to operate all the proposed functionalities,
it is very limiting in some occasions, specially when speed is
needed.

Generally, in civil aviation, there are not many cases of fast-
paced sequences of actions a pilot must take during a cruise, so
surfing through the device’s screens and adjusting the values
is not usually a problem. Unfortunately, taking-off and landing
(specially when an emergency or route alterations are in place)
can be very demanding, which means the device can hinder
the pilot’s performance.

For sure, very welcome upgrades to the device include a
bigger LCD screen (at least 20 by 4) and more input methods,
mainly buttons, but also potentiometers (they would make
much easier to reach the wanted values). The bigger screen
could fit more information at once, making it so that fewer
button presses are needed to find the correct information.

X. CONCLUSION

Flight simulation has proven to be an essential tool for
military and civil pilots training. Today, home simulators are
a great way to make aviation accessible to more people,
increasing the amount of potential pilots. The main problem is
that the hobby is not always accessible in terms of hardware
and even software.

This work proposes a very cost-effective device to control
the radio stack of various GA aircraft in FS9 and FSX (with
some tweaks). It only consists of an Arduino, some buttons
and an LCD. The operation is very simple, and the program is
very easily extensible, making it a good start point for bigger
projects or upgrades. The source code for the project can be
found at https://github.com/fvcalderan/fsradio.

Tests show that it is a capable device and that it fulfills its
purposes, but it certainly has limitations. The small amount of
buttons and small LCD lead to a not ideal experience when fast

radio manipulation is needed, like when taking off or landing
(specially in emergencies).

Possible next steps with this device include making it faster
to use, by adding buttons, potentiometers and a bigger LCD.
It is also possible to port the whole device to more modern
simulators, such as X-Plane 11 (or the recently launched X-
Plane 12) and Microsoft Flight Simulator 2020.

REFERENCES

[1] J. De Angelo, “The link flight trainer,” ASME, jun 2000.
[2] L. Ross, P. Slotten, and L. Yeazel, “Pilot’s evaluation of the usefulness

of full mission IFR simulator flights for general aviation pilot training,”
The Journal of Aviation/Aerospace Education and Research, 1990.
[Online]. Available: https://doi.org/10.15394%2Fjaaer.1990.1024

[3] H. Magazines, “Airline pilots fly anywhere in world - without leaving
the ground,” Popular Mechanics, vol. 102, no. 3, p. 87, 1954.

[4] F. A. Simulations, “Flight simulator technology through the years,” Fly
Away Simulations, 2010.

[5] D. J. Allerton, “The impact of flight simulation in aerospace,” The
Aeronautical Journal, vol. 114, no. 1162, pp. 747–756, dec 2010.
[Online]. Available: https://doi.org/10.1017%2Fs0001924000004231

[6] A. Fafard, “Analysis: Civil simulator fleet nears 1,300 mark,” Flight
Global, 2018.

[7] M. Morrison, “Analysis: Civil simulator manufacturer strategies com-
pared,” Flight Global, 2018.

[8] B. Cameron, H. Rajaee, B. Jung, and R. Langlois, “Development
and implementation of cost-effective flight simulator technologies,” in
Proceedings of the 3rd International Conference on Control, Dynamic
Systems, and Robotics (CDSR’16). Canada, Ottawa, no. 126, 2016, pp.
1–8.

[9] W. Sweet, “The glass cockpit [flight deck automation],” IEEE Spectrum,
vol. 32, no. 9, pp. 30–38, 1995.

[10] P. Crogan, “Gametime: History, narrative, and temporality in combat
flight simulator 2,” in The video game theory reader. Routledge, 2013,
pp. 297–324.

[11] Device Class Definition for Human Interface Devices (HID):
Firmware Specification – Final 1/30/97. USB Implementer’s
Forum, 1997. [Online]. Available: https://books.google.com.br/books?
id=bQZoHQAACAAJ

[12] T. Aslandere, D. Dreyer, and F. Pankratz, “Virtual hand-button interac-
tion in a generic virtual reality flight simulator,” in 2015 IEEE Aerospace
Conference, 2015, pp. 1–8.

[13] E. Lee and Y. Kwon, “Development of an expanded arduino interface
board pcb module for large commercial jet simulator,” Int. J. Mech. Eng.
Rob. Res, vol. 4, no. 4, pp. 309–313, 2015.

[14] M. Benedikovic, D. Hamernik, and J. Brozek, “Arduino wrapper for
game engine-based simulator output,” in International Conference on
Applied Physics, System Science and Computers. Springer, 2018, pp.
145–156.

[15] A. Redei, S. Dascalu, and F. C. Harris Jr, “A framework for virtualizing
joystick controls in a flight simulator training environment,” INTERNA-
TIONAL JOURNAL OF COMPUTERS AND THEIR APPLICATIONS,
p. 30, 2018.

[16] A. Redei and S. Dascalu, “A method for handling multi axis input for
a motion based flight simulator,” in 27th International Conference on
Software and Data Engineering, 2018.

[17] M. A. Othman, M. S. M. Hanif, N. A. N. K. Amilin, and M. L. A.
Saing, “Development of flight simulator control trainer (fsct) for aviation
education,” Multidisciplinary Applied Research and Innovation, vol. 2,
no. 3, pp. 095–101, 2021.

[18] P. Suárez Garcı́a et al., “Hid interface program based in arduino for
connecting flying simulator controls to a pc,” 2022.

[19] P. Dowson, “Fsuipc: Application interfacing module for microsoft flight
simulator,” 2012.

[20] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho,
“Lua—an extensible extension language,” Software: Practice and
Experience, vol. 26, no. 6, pp. 635–652, jun 1996. [On-
line]. Available: https://doi.org/10.1002%2F%28sici%291097-024x%
28199606%2926%3A6%3C635%3A%3Aaid-spe26%3E3.0.co%3B2-p

[21] G. McKay, “Six pack – the primary flight instru-
ments,” mar 2010. [Online]. Available: http://www.learntofly.ca/
six-pack-primary-flight-instruments/

https://github.com/fvcalderan/fsradio
https://github.com/fvcalderan/fsradio
https://doi.org/10.15394%2Fjaaer.1990.1024
https://doi.org/10.1017%2Fs0001924000004231
https://books.google.com.br/books?id=bQZoHQAACAAJ
https://books.google.com.br/books?id=bQZoHQAACAAJ
https://doi.org/10.1002%2F%28sici%291097-024x%28199606%2926%3A6%3C635%3A%3Aaid-spe26%3E3.0.co%3B2-p
https://doi.org/10.1002%2F%28sici%291097-024x%28199606%2926%3A6%3C635%3A%3Aaid-spe26%3E3.0.co%3B2-p
http://www.learntofly.ca/six-pack-primary-flight-instruments/
http://www.learntofly.ca/six-pack-primary-flight-instruments/

	Introduction
	Home flight simulator software today
	Related Works
	Radio Stack
	Hardware assembly
	Parts
	Assembly
	LCD Keypad connections

	Software architecture
	Device usage
	COMMs and NAVS
	ADF and XPDR
	DME
	Autopilot Altitude and Heading Hold
	Autopilot Vertical Speed
	Autopilot Navigation Mode
	Autopilot Master, NAV hold and APR hold
	Operation Modes table

	In-simulator GUI
	Tests
	Computational environment
	Objective results
	Subjective results

	Conclusion
	References

