
Minimax Algorithm Applied to Chess Engines
Calderan, Felipe V.

Institute of Science and Technology (ICT)
Federal University Of São Paulo (UNIFESP)

São José dos Campos, Brazil
fvcalderan@unifesp.br

Abstract—Minimax algorithm is widely used in games and
has been a very important part of Chess Engines. Here it’ll be
analyzed how different evaluation functions of a chess board
affects the performance of Minimax, as well as how the depth
of search changes both how well the algorithm plays and how
much time it needs to make a move. Finally, it’ll be shown how
the algorithm deals with mate-in-3 chess puzzles and the results
of matches between the simple Minimax algorithm implemented
and chess.com’s chess engine in the state it’s found at the time
of this article’s writing.

Index Terms—chess, engine, artificial intelligence, Minimax

I. INTRODUCTION

Artificial Intelligence has become a very significant area
of study in the modern era. It has found uses in science,
marketing, economy and in the gaming industry, to name a
few of them.

Before AI was widespread in the gaming industry, single-
player games were very different from what they are today.
Basically, the game itself had to be single-player in its nature,
e.g. patience card game. This means the players were chal-
lenged only by their own abilities, the threats that the game
environment imposes and, in many cases, luck.

There was no way one could play a game like chess
(apart from analyzing positions and playing against oneself).
Fortunately, the will to create an artificial opponent for chess
has been present since a long time ago, as it’ll be discussed
in the following section.

Today, top chess engines are virtually unbeatable by any
human being in a standard match. However, Human-Computer
chess matches still happen, but with the AI being handicapped
[1], [2], that is, with one or more pieces missing or with move
disadvantage.

Then, why are chess engines being continuously developed
to this day, if they are already so strong? There are mainly
two reasons for this:
• New AI methods are constantly being tested in games,

because games are challenging. One recent example of
games being useful in testing bleeding-edge AI tech-
nology is OpenAI in DotA. This is a game that runs
continuously (there aren’t turns), and is expected to be
played in team. Program an AI that can thrive in an
environment like this isn’t an easy task. Also, OpenAI
Gym [3] is a great toolkit for developing reinforcement
learning algorithms, so it’s useful for science outside the
world of games.

• The developments in chess AIs also contribute for human
improvement in the game, since the engines help humans
analyze positions and games, increasing the speed in
which players can learn and understand given situations.
Magnus Carlsen, actual World Chess Champion said
during an interview with Deutsche Welle (DW): “we’ve
known for a long time that computers are better, so the
computer never has been an opponent. It’s a tool to help
me analyze and to help me improve at chess.” [4]

Therefore, it’s important to continue developing chess en-
gines both for the science of it and for chess. This paper,
won’t be covering the state of the art of chess engines in
details, though. Rather, it’ll cover a specific algorithm called
Minimax, since it has been very relevant not only in chess,
but in many other games too.

This is exactly what will be covered:
• A brief history of chess-playing machines, when Minimax

was first introduced to the chess world and what is the
state of the art.

• How Minimax algorithm is implemented and how alpha-
beta pruning can help its performance.

• How the depth of search interferes in how well a com-
puter plays and how much it has to think before moving.

• The importance of evaluation functions and how they are
decisive when the algorithm has a limited depth of search.

• Minimax can perfectly mate-in-x, given enough depth.
• How well the implemented algorithm does against a “real

world AI”

II. BRIEF HISTORY AND RELATED WORKS

In the year 1770, Wolfgang Von Kempelen created a fake
chess-playing machine called “The Turk” [5]. This machine
was controlled by a human, that typically was a chess mas-
ter inside its big cabinet. The Turk ended up playing (and
defeating) many people, including Napoleon Bonaparte and
Benjamin Franklin. Although it was fake, the machine was one
of the first documented signs of human interest in attempting
to create an artificial chess opponent.

After The Turk, two more famous automata were created:
Ajeeb [6] in 1868 and Mephisto [7] in 1876. Ajeeb operated
very similarly as The Turk, but it also played checkers.
Mephisto, in other hand, didn’t hide its chess master inside
a box; it was controlled electromagnetically.

The next relevant innovation in Computer Chess was “El
Ajedrecista”, which is an automaton that was built in 1912



by Leonardo Torres y Quevedo. This is the first documented
real chess-playing machine [8]. El Ajedrecista can checkmate
a human in the following conditions: the machine should have
a rook and a king (playing as white) and the human should
only have a king (playing as black). This makes 1912 the first
time where a human could play against an artificial opponent,
though in a very limited way.

Fast-forwarding to 1948, Norbert Wiener published Cyber-
netics [9], in which he proposes a way to build a chess engine
using Minimax with a depth-limited search and an evaluation
function. This is very related to the studies presented in this
article.

Shortly after, in 1949, Claude Shannon published “Pro-
gramming a Computer for Playing Chess”, which was one
of the first papers discussing computer chess [10]. In this
paper, the term Minimax was not coined, but the concept of
Minimax is essentially what is presented. In other words: idea
of minimizing and maximizing the game score based on board
evaluation, where the algorithm foresees the future, by playing
perfectly its turn, then the opponent turn, and so on.

Finally, in 1951, Alan Turing developed an algorithm capa-
ble of playing a full game of chess [11]. This was so advanced
that a computer that could run such program didn’t exist.
Turing ran the program himself by hand, taking many minutes
calculating each move. Although the algorithm wasn’t strong,
he believed that with enough computer power, it could outplay
many human players. This is very relevant because, although
the term AI wasn’t coined until 1956, Turing’s algorithm is
basically a fully functional chess AI, since it considered many
game play factors such as material value, position value and
king safety.

As the years went by, Alpha-beta Minimax was explored
by some researchers, such as in [12], where it’s presented
a mathematical model in which minimax does a good job,
giving an end game chess example. At this point in time,
mathematical models showing the effectiveness of Minimax
were uncommon, therefore this kind of analysis is essential.

Meanwhile, other researchers were looking for alternatives
to minimax [13], which was important since eventually Alpha-
beta Minimax would be beaten by modern alternatives, not
only in chess, but in Go and other games in the same category.

Today, the most modern and powerful chess engines use
Monte Carlo Tree Search (MCTS) as the algorithm to play the
games. The evaluation functions can be made using reinforce-
ment learning. This method is used by Google’s AlphaZero
[14], and has proved to be a very good way to create a chess
engine, since, although there are controversies, AlphaZero
beat Stockfish, which was the previous strongest chess engine
available.

It’s also worth mentioning that there have been many
other proposed ways to generate evaluation functions, such
as genetic algorithms.

III. METHODS

A. Minimax

Minimax is a decision algorithm that minimizes the loss for
a worst case scenario (maximum loss). Its implementation is
recursive and in a 2 players game, Minimax always considers
that the players will play perfectly, according to its evaluation
criteria. Therefore, in theory, it would be possible to generate
perfect decisions (leading to perfect play in a game). In reality,
it depends.

If the game in which Minimax is being applied is simple
enough to generate a branching tree that a modern computer
can run through in an acceptable time, then perfect play is,
in fact, possible. In this case, no special heuristic is needed,
since the evaluation would be the final state of the perfectly
played game.

Unfortunately, a game like chess has a big enough tree that
it would take a very long time to process. Take the Shannon
Number [15]: 10120. This number is generated by estimating
that a game of chess will have 40 moves (where in each move
there are two half-moves: white’s and black’s), and in each
move a player choose between an average of 30 possible
moves. The Minimax time complexity is O(bm) (since it
performs a Depth-First Search (DFS) like procedure), where
b is the branching factor and m is the maximum depth of the
tree. From the Shannon Number, it’s inferable that b = 30
and m = 40 ∗ 2, therefore the time complexity would be
O(3040∗2) ≈ O(10120).

Although there’s a way to mitigate this effect by using
Alpha-Beta pruning, there’s no way a full branching tree of
chess is viable, so limited depth is a must and, in consequence,
so are heuristics to evaluate a given position. This leads to
the building blocks for this chess-playing AI algorithm: A
minimax decision tree, with limited depth and a heuristic
function.

Minimax’s evaluation of a position is given by the function
(1), which is described in more detail in [16].

eval(s) = heuristic eval(s) if done
maxa∈moves(s)MM(play(s, a)) if max turn
mina∈moves(s)MM(play(s, a)) if min turn

(1)

where s is the current game state, heuristic eval(s) is the
heuristic evaluation of the game state, moves(s) is the set of
available moves in the current state, MM() is the Minimax
function call and play(s, a) means “play a from the s state”.

It’s also worth mentioning that “if done” can be broken into
2 separate cases:

• The depth limit has been reached
• The game has ended

This of course means that, the smaller the depth, the less
likely the algorithm is to make the best move, especially
considering situations like mid-game chess.



Pseudo-code 1 is a python-styled pseudo-code for Minimax,
which is a simple algorithm to implement.

def minimax(board, depth, player):
if depth == 0 or game_over():
return heuristic_eval(board)

movelist = [i for i in legal_moves]

if player == MAX:
best_eval = -infinity
for move in movelist:

play_move(board, move)
eval = minimax(board, depth-1, MIN)
undo_move(board)
best_eval = max(eval, best_eval)

return best_eval
else:
best_eval = infinity
for move in movelist:

play_move(board, move)
eval = minimax(board, depth-1, MAX)
undo_move(board)
best_eval = min(eval, best_eval)

return best_eval

Pseudo-code 1. Minimax

B. Alpha-Beta pruning

Alpha-Beta pruning in Minimax is a very straightforward
optimization that can increase performance dramatically, as
shown in the Experimental Analysis section. Basically, Alpha-
Beta removes the necessity for the algorithm to run through
the whole tree, and even better, returns the exact same result
that standard Minimax would. So, considering a chess engine,
there’s essentially no reason to not optimize Minimax with
Alpha-Beta pruning or other similar method.

As stated before, Minimax searches in a DFS fashion. With
Alpha-Beta, for each node that isn’t a leaf, 2 values are
typically stored:
• Alpha: Maximum value found in MAX nodes descen-

dants up to the current state.
• Beta: Minimum value found in MIN nodes descendants

up to the current state.
When executing the algorithm, there are two possible sce-

narios for the pruning to occur: either when the node is a MAX
node and α(node) ≥ β(parent(node)) or when the node is a
MIN node and β(node) ≤ α(parent(node)).

Pseudo-code 2 shows how this is integrated inside Minimax.

def minimax(board, depth, player, a, b):
if depth == 0 or game_over():
return heuristic_eval(board)

movelist = [i for i in legal_moves]

if player == MAX:
best_eval = -infinity
for move in movelist:

play_move(board, move)
eval = minimax(board, depth-1, MIN, a, b)
undo_move(board)
best_eval = max(eval, best_eval)

if (a := max(a, eval)) >= b: break
return best_eval

else:
best_eval = infinity
for move in movelist:

play_move(board, move)
eval = minimax(board, depth-1, MAX, a, b)
undo_move(board)
best_eval = min(eval, best_eval)
if (b := min(b, eval)) <= a: break

return best_eval

Pseudo-code 2. Minimax with Alpha-Beta pruning

Notice how there were barely any changes to the algorithm.
Alpha-Beta introduced two new parameters to the Minimax
function and two new lines of pseudo-code. Fig. 1 illustrates
the procedure in action.

Fig. 1. Minimax with Alpha-Beta pruning tree.

C. Heuristics

Since Minimax will run with a limited depth, there must be
a way to evaluate a given position mid-game. The heuristics
explored here are related to chess in their given format, but
they can be generalized to be applied in similar games. Also,
heuristics can be set by using reinforcement learning, genetic
algorithm and other techniques. For an in-depth view on these
sophisticated methods, the reader can refer to [14] and [17],
respectively, as these won’t be covered in this paper.

1) Point Value: The simplest chess heuristic is to sum the
point values, which are values given to the pieces relative to
their strength, e.g. a pawn is worth 1 point, knight and bishop
3 points each, rook 5 points, queen 9 points and the king is
invaluable.

Although this is a very limited evaluation function, it does
work for very obvious scenarios, which include the execution
of a good trade, avoidance of a bad trade or pointless material
loss, assuming there are no further tricks involved, that is,
there are no underlying strategies where giving up a piece,
actually promotes an advantage.



Fig. 2 shows a situation where Minimax with depth 4 is
guaranteed to detect the best move (Qb7) by considering only
the point values.

80Z0Z0Z0Z
7Z0ZnZ0j0
60Z0Z0ZpZ
5o0Z0Z0Zp
4PZ0Z0Z0O
3ZQZ0Z0Z0
20Z0Z0OPZ
1Z0Z0ZKZ0

a b c d e f g h

Fig. 2. White plays and wins a knight

This evaluation function is, however, incapable of doing a
very essential task: checkmating the opponent. This happens
because checkmate isn’t as simple as taking the king, but rather
a series of movements that eventually generate a position
where the king is being attacked, but has nowhere to go.

If this algorithm were to do the same task as “El Aje-
drecista”, the game would probably end in a draw (75-move
rule)1, due to the AI moving randomly across the board
without any strategy. A checkmate is possible only by luck.

Fortunately, this is solvable. It’s sufficient to reward a
checkmate position with a high score in magnitude (positive
for white and negative for black) and have a big enough depth
so that the algorithm can detect such position. The harder the
mate is to perform, the bigger should be the depth. For very
difficult mates, the best option would be to implement specific
code for end-game scenarios.

2) Piece-Square Table: Another possible heuristic is Piece-
Square Table. This approach also sums the values of the pieces,
but the main difference is that besides the Point Value, each
piece earns additional points depending on where they are in
the board.

This can generate very interesting interactions. For instance,
take these matrices that represent the Piece-Square Tables for
the white rook and king, respectively:

R =



0 0 0 0 0 0 0 0
5 10 10 10 10 10 10 5
−5 0 0 0 0 0 0 −5
−5 0 0 0 0 0 0 −5
−5 0 0 0 0 0 0 −5
−5 0 0 0 0 0 0 −5
−5 0 0 0 0 0 0 −5
0 0 0 5 5 0 0 0


1Not to be confused with the 50-move rule, which has to be claimed

K =



−30 −40 −40 −50 −50 −40 −40 −30
−30 −40 −40 −50 −50 −40 −40 −30
−30 −40 −40 −50 −50 −40 −40 −30
−30 −40 −40 −50 −50 −40 −40 −30
−20 −30 −30 −40 −40 −30 −30 −20
−10 −20 −20 −20 −20 −20 −20 −10
20 20 0 0 0 0 20 20
20 30 10 0 0 10 30 20


The combination of these tables encourages castling, es-

pecially king-side, because the king leaves a position that is
worth 0 points to go to one that is worth 10 or 30 points,
while the rook unlocks possible interesting squares (a4, a5).
All of this in one single move!

Other interesting things that this kind of heuristic enables is
encouraging pieces development, center domination, specific
strategies like bishops in Fianchetto and so on. This gets even
stronger if the tables are dynamic, in other words, if they
change according to what is more suitable depending on the
pawn structures, the amount of remaining pieces, and many
other factors. Take the following matrix representing a Piece-
Square Table for a King in the end-game:

Ke =



−50 −40 −30 −20 −20 −30 −40 −50
−30 −20 −10 0 0 −10 −20 −30
−30 −10 20 30 30 20 −10 −30
−30 −10 30 40 40 30 −10 −30
−30 −10 30 40 40 30 −10 −30
−30 −10 20 30 30 20 −10 −30
−30 −30 0 0 0 0 −30 −30
−50 −30 −30 −30 −30 −30 −30 −5


In the end-game, there are fewer threats to protect the king

from and it should be time to start pushing the pawns forward
for a promotion. Although the king is invaluable, it is also
useful as a piece, whether keeping the other king distant, or
pursuing weak pawns. This means that having an active king
is a wise decision, so there is no point in keeping it at the
corner of the board.

Unlike the Point Value method, this evaluation method
also provides strategies for the early and mid-game, due to
the incentives to place the pieces in certain positions. A
compilation of Piece-Square Tables can be found in [18].

3) The faster the checkmate is, the better: If the game has
come to a position where a checkmate is viable, the faster this
mate happens, the more rewarding it should be to the algorithm
to avoid pointless game stalling. Function (2) shows how this
is implemented mathematically.

heuristic eval(s) ={
∞− (max depth− depth) if MAX turn ∧ 1-0
−∞+ (max depth− depth) if MIN turn ∧ 0-1 (2)

where max depth is the initial depth passed to Minimax.



IV. EXPERIMENTAL ANALYSIS

In this section, it’ll be described the environment in which
the experiments were ran, how the tests were configured and
measured, the results and a brief discussion about what was
obtained.

A. Computational Environment

All the tests were executed in the same computational
environment, which is a conventional low-spec modern laptop
(Acer Aspire 3 A315-53-365Q) with increased RAM.

1) Hardware:
• CPU: Intel® Core™ i3-8130U2 2.2GHz Turbo: 3.4GHz
• GPU: Intel® UHD Graphics
• RAM: 12GB DDR4 2400MHz
• HDD: 1TB 5400rpm
2) Software:
• OS: Arch Linux 5.8.2-arch1-1 x86 64 GNU/Linux
• Python: 3.8.5 (default, Jul 27 2020 08:42:51)
• GCC: 10.1.0 on Linux
• python-chess library: 0.31.3

B. Analysis Criteria

For convenience, from now on Minimax without Alpha-
Beta pruning will be called Minimax and Minimax with
Alpha-Beta pruning will be called Alpha-Beta.

1) Time comparison between Minimax and Minimax with
Alpha-Beta: 3 entire chess games between two identical AIs
were played in each category, those being: Minimax (depth 1,
2, 3, 4) and Alpha-Beta (depth 1, 2, 3, 4), with a total of 24
games played.

For each category, it was taken the average of the computing
time (time span in which the computer was thinking) of white’s
and black’s moves between the 3 games e.g. In the Alpha-Beta
with depth 3 category, the following results were obtained:

white’s Average move time in game 1: 0.611708s
black’s Average move time in game 1: 0.964356s
white’s Average move time in game 2: 0.295526s
black’s Average move time in game 2: 0.311997s
white’s Average move time in game 3: 0.388936s
black’s Average move time in game 3: 0.715847s

Given this small dataset, taking the average of the values, it
would be obtained that the average move time for this category
is 0.548062s.

It’s worth mentioning that the half-moves (white’s or black’s
individual moves) were timed using python’s timeit built-in
library and that there were no noticeable differences between
white’s and black’s average move times. There were games
where white was faster, games where black was faster and
games where they were even, but the average move times
across all the games in the categories were essentially the
same.

2only one core was used per game

2) Games played between the implemented AI against itself,
varying the depth and evaluation function method: 10 entire
games between Alpha-Beta (except for the single Random AI
entry) AIs were played in each event, those being:
• Random AI vs Point-Value Depth 2
• Point Value Depth 2 vs Piece-Square Table Depth 2
• Point Value Depth 3 vs Piece-Square Table Depth 2
• Point Value Depth 3 vs Piece-Square Table Depth 3
• Point Value Depth 4 vs Piece-Square Table Depth 3
• Point Value Depth 4 vs Piece-Square Table Depth 4.
This makes for a total of 60 games played. In each event,

each of the 2 AIs played 5 matches as white and 5 matches
as black.

The analysis criterion consists of verifying how many
points the AIs got in each event, where a win counts as 1
point, a draw as 1/2 points and a loss as 0 points. There is
no time limit.

3) Implemented AI vs chess.com’s AI: The main objective
here was to see how far the implemented Alpha-Beta AI using
Piece-Square Table with depth 4 could get playing against
chess.com’s “play vs AI” [19] computer, therefore the rules
were: for each event, whichever engine is the first one to have 2
points more than the opponent wins. The first event starts with
chess.com’s AI playing in difficulty 2 (the difficulty ranges
from 1 to 10) and for every event that the implemented AI
wins, chess.com’s AI difficulty level is increased by 1. When
the implemented AI finally loses, the experiment is finished.

The point system is exactly the same as in the games played
between the implemented AI against itself: 1 for a win, 1/2
for a draw and 0 for a loss.

The two AIs alternate sides each match, this way it’s
possible to give them the opportunity to play both as white
and as black.

4) Mate-in-3 Puzzles: Mate-in-3 Puzzles were played by
the Alpha-Beta AI using Point Value with Depth 5 as the
side that is supposed to checkmate against Stockfish 11, which
should be checkmated successfully.

The reason to use Point Value instead of Piece-Square Table
is because in this situation, the latter simply has no use, since
Minimax with depth 5 should, by itself, see the checkmate.

It’s also convenient to remind the reader that “The faster the
checkmate is, the better” method is active, so it’s guaranteed
that the mate will occur in the given move limit, given that
the algorithm was correctly implemented.

In total, 6 puzzles were tested, each one 5 consecutive times,
making a total of 30 games played.

This last experiment is more of a sanity-check to whether
Alpha-Beta is doing its job properly. The criterion is simple:
if Alpha-Beta can checkmate Stockfish in the correct number
of moves, it’s approved, otherwise, it’s rejected. Of course, it
should do it every time that it’s tested for a given puzzle.

Figs. 3,4,5,6,7 and 8 show all the puzzles given to the AI.



80ZrZ0l0j
7opZ0a0Z0
60ZbZQZ0o
5Z0ZNO0Z0
40Z0oBs0O
3Z0Z0Z0Z0
2PO0Z0Z0Z
1Z0S0Z0SK

a b c d e f g h

Fig. 3. White plays - Mate in 3

80Z0ska0s
7o0Snopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
4QZ0APZ0Z
3Z0ZBZ0ZP
2PZPl0OPZ
1Z0Z0ZRJ0

a b c d e f g h

Fig. 4. White plays - Mate in 3

8rZbZkZ0s
7opo0Zpop
60ZpZ0Z0Z
5Z0Z0Z0Z0
40Z0LnZqZ
3Z0Z0Z0Z0
2POPA0ZPO
1Z0JRZBZR

a b c d e f g h

Fig. 5. White plays - Mate in 3

8rZ0mkZ0s
7o0Z0Z0op
60ZbS0oqZ
5ZpM0o0Z0
40ZQZ0Z0Z
3A0Z0Z0O0
2PO0ZPO0O
1Z0ZRZ0J0

a b c d e f g h

Fig. 6. White plays - Mate in 3

80ZkZ0Z0s
7opo0Z0o0
60Z0o0ZqZ
5Z0ZPZ0Z0
40ZPZpZ0Z
3ZPZ0Z0Z0
2PZ0ZQaNA
1S0Z0ZRZK

a b c d e f g h

Fig. 7. Black plays - Mate in 3

8rZ0ZkZ0s
7opZ0ZpZ0
60Zpo0Z0Z
5Z0Z0o0Z0
40Z0mPa0o
3Z0Z0ZPMq
2POPZ0O0O
1S0ZQZBSK

a b c d e f g h

Fig. 8. Black plays - Mate in 3



C. Results and Discussion

Here follows the results obtained from the studies made.

1) Time comparison between Minimax and Minimax with
Alpha-Beta: Since the time complexity of Minimax algorithm
is O(bm), it tends to grow exponentially as the depth (m)
is increased. Alpha-Beta mitigates this effect by reducing the
number of branches that will need to be explored. Table I and
Fig 9 show the growth of the time taken for the computer to
calculate the best move using both: Minimax-only approach
and Minimax with Alpha-Beta.

Depth Minimax (s) Alpha-Beta (s)
1 0.005761 0.005323
2 0.213530 0.080171
3 6.056677 0.548062
4 45.194300 3.846207

TABLE I
AVERAGE MOVE TIME X DEPTH

Fig. 9. Average move time x Depth

It’s possible to see how effective Alpha-Beta pruning can be.
Alpha-Beta with depth 4 was over 91% faster than Minimax
with depth 4. In fact, it was 36% faster than Minimax with
depth 3. Therefore, by optimizing with Alpha-Beta, it was
possible to analyze the game 1 move further with the same
quality of outcome and in less time.

Needless to say, it’s possible to reduce this time significantly
by using more sophisticated pruning methods and heuristics.
Also, this was all done using only a single core. Of course,
a multi-core approach would be faster, but the algorithm
complexity (in terms of how difficulty the concepts behind
are) for a utilizing multi-core increases substantially.

2) Games played between the implemented AI against itself,
varying the depth and evaluation function method: The results
are presented in Table II.

Player Depth White Black
Random AI * 0 0.5
Point Value 2 4.5 5
Point Value 2 1 0
Piece-Square Table 2 5 4
Point Value 3 3.5 4
Piece-Square Table 2 1 1.5
Point Value 3 0.5 0.5
Piece-Square Table 3 4.5 4.5
Point Value 4 2 1.5
Piece-Square Table 3 3.5 3
Point Value 4 1.5 1.5
Piece-Square Table 4 3.5 3.5

*: Does not apply, since the algorithm plays randomly

TABLE II
RESULTS OF THE MATCHES BETWEEN IMPLEMENTED AIS

These are some interesting results. The Point Value with
depth 2 stalemated the Random AI a single time. Fig 10 shows
the final position.

80Z0L0Z0Z
7ZkZ0Z0Z0
60Z0ZPZ0Z
5S0Z0Z0M0
4BA0O0Z0Z
3OPZ0ZPZ0
2RZPZ0J0Z
1ZNZQZ0Z0

a b c d e f g h

Fig. 10. Minimax with Point Value stalemates Random AI

The final move was 54. Qd8. The suggested moves by
Stockfish 11 were 54. Bc5 Kc7 55. Ra7#, which need at least
depth 3 to be accomplished consistently, explaining why the
stalemate happened.

For the other games, a pattern may seem to emerge, where
Point Value loses to Piece-Square Table if using the same
depth, and wins if using a depth 1 bigger than Piece-Square
Table. This however, turns out to be false, since Piece-Square
Table with depth 3 beat Point Value with depth 4, by a good
margin.

This shows that, with limited depth, strategy (or heuristics
for an engine) is a very important concept for strong play.
Event if the computer could see many moves into the future,
if those moves have no meaning, this won’t result in a stronger
game play.

An analysis can also be made comparing the evaluation
functions of the Piece-Square Table method and Stockfish 11.
This analysis will be done using one of the games played
between Point Value with depth 4 (as white) and Piece-Square
Table, also with depth 4 (as black).



Fig. 11 is a graph that shows how both of these evaluate
a game, board state by board state. Since the implemented
algorithm uses a different evaluation scale than Stockfish,
it was mapped to the same range. Also, consider 30 points
(positive or negative) “mate-in-x” for Stockfish.

It’s also worth mentioning that a positive number indicates
that white is better, whereas a negative one shows that black
is better.

Fig. 11. Evaluation x Moves

Observing Fig. 11, it’s possible to see a big spike in Piece-
Square Table’s evaluation. This shows a big difference between
how it and Stockfish evaluate the board: its evaluation is static,
it refers to a given moment. Stockfish evaluation also considers
the future.

However, there’s a big drop around the spike for both the
implemented algorithm and for Stockfish, the difference is that
Stockfish saw it first. Fig. 12 shows the move that caused the
spike.

8rZ0ZkZ0s
7oQoqZpop
60Z0Z0m0Z
5Z0abZ0Z0
40Z0o0ZPZ
3Z0OPZPZ0
2PO0Z0Z0O
1SNAKZBZR

a b c d e f g h

Fig. 12. White played 13. Qxa8+

White’s 13. Qxa8+ was actually the move suggested by
Stockfish, since 13. Qa6 Bxf3+ 14. Kc2 Bxh1 causes white

to lose a pawn, lose the ability to castle and lose a Rook. If
white tries to defend the king with Be2 instead of Kc2, it’s
even worse, because then what happens is 14. Be2 Bxe2+ 15.
Kxe2 Qxg4+ 16. Kd2 Qg2+ 17. Kd1 Qxh1+ 18. Kc2.

Other than Qxa8+ and Qxa6, there are no other acceptable
moves for white’s queen. This situation could have been
avoided, had Minimax algorithm have a depth bigger than 4.
Basically, white wouldn’t have put its queen in this situation
in the first place.

After this, the game went very poorly for white and
this is visible in Fig 11. The interesting fact to observe is
that, although the Piece-Square Table algorithm is a much
less sophisticated evaluation method, both evaluation methods
showed a more or less stable game evaluation in the first half
of the graph and then a huge increase in the value magnitude
afterwards (starting from the queen situation).

Another point to be made is how Piece-Square Table has
a much better structure than Point Value. In Fig. 12, white
has barely developed its pieces, in fact, only the queen and
some pawns are active. Meanwhile, black has its bishops
in a strong spot in the board, a somewhat developed knight
and is preparing to castle (which does happen some moves
after).This kind of structure can be observed in most of the
games with enough depth and will be shown in more details
in the following experiments (against chess.com’s AI).

3) Implemented AI vs chess.com’s AI: The results of the
matches between the implemented AI (Minimax with Alpha-
Beta pruning, depth 4 and using Piece-Square Table heuristic)
and chess.com’s AI can be seen in Table III. The reader should
keep in mind the rules already stated in the previous section.

Player Difficulty White Black
Implemented AI Depth 4 1 1
chess.com’s AI Difficulty 2 0 0
Implemented AI Depth 4 1 1
chess.com’s AI Difficulty 3 0 0
Implemented AI Depth 4 1 1
chess.com’s AI Difficulty 4 0 0
Implemented AI Depth 4 1 0
chess.com’s AI Difficulty 5 2 1

TABLE III
RESULTS OF THE MATCHES BETWEEN THE IMPLEMENTED AI AND

CHESS.COM’S AI

It’s clear that the implemented AI dominated the games up
to chess.com’s difficulty 4, but difficulty 5 was too much for
it to deal with. It was still able to get a game, which was
impressive.

In the matches against the difficulty 2, it’s possible to see
how much better Alpha-Beta develops its pieces compared to
chess.com’s AI. Fig 13 and 14 show the board state in move
15 of the games.

Notice how in Fig. 13 Alpha-Beta has built a solid defense:
it had already castled and developed bishops and knights,
while black side is very weak, with already no castling
possibility and two pawns and one knight in disadvantage.



Looking at Fig. 14, black is dominating the board with a
very strong center aggression, is ready to castle, haven’t lost a
single pawn and already have one extra knight (and 2 pawns).

Considering that the queens are about to be exchanged and
the white king, again, has no castling possibility, the game has
pretty much ended at this point.

8qsbZ0ans
7Z0Zpjpo0
60Z0ZpZ0o
5Z0Z0Z0Z0
40Z0ZPZ0Z
3Z0ABZNZ0
2POPM0OPO
1S0ZQZRJ0

a b c d e f g h

Fig. 13. Game 1 - Alpha-Beta (white) vs Difficulty 2 (black) - Move 15

8rZ0ZkZ0s
7Zpo0Zpop
60ZnZ0m0Z
5Z0Zqo0Z0
40O0obZ0Z
3OQZpO0ZP
2NZ0Z0OPZ
1S0A0ZKZR

a b c d e f g h

Fig. 14. Game 2 - Difficulty 2 (white) vs Alpha-Beta (black) - Move 15

For the matches with chess.com’s AI in difficulty 3, in the
first game, Alpha-Beta managed to place a pawn in the 7th

rank, which was fiercely defended until the end of the game,
even though it ended up never promoting. Fig. 15 shows the
moment when the pawn was placed in the 7th rank and Fig.
16 shows the ending position.

In the second game, nothing remarkable happened. By
the move 15, Stockfish evaluated the board giving a small
advantage for Alpha-Beta. After move 15, this advantage
started to snowball, since chess.com’s AI started losing many
pieces one after another.

Of course, as expected, increasing the difficulty lead to
more structured and competitive games in general and this
will become visible in later games with difficulty 4 and 5,
when Alpha-Beta finally couldn’t keep up.

8rZbl0Z0s
7m0o0jPZ0
6pZ0Z0o0o
5ZpZpZ0Z0
40Z0M0Z0Z
3O0O0O0Z0
20ZPZBOPO
1S0ZQJ0ZR

a b c d e f g h

Fig. 15. Game 3 - Alpha-Beta (white) vs Difficulty 3 (black) - Move 14

80L0Z0s0Z
7S0ZkZPZ0
60Z0Z0Z0Z
5Z0oPZ0ZB
40Z0Z0Z0Z
3Z0Z0O0Z0
20ZPZ0OPO
1Z0Z0ZRJ0

a b c d e f g h

Fig. 16. Game 3 - Alpha-Beta (white) vs Difficulty 3 (black) - Move 33

The games in difficulty 4 were much more interesting. The
first game was played in a very defensive manner by both
sides. Until move 14, only a single exchange had happened:
white’s and black’s knights. The game was very balanced at
this point as it’s visible in Fig. 17. Stockfish 11’s evaluation
was +1.1, confirming that the game was, in fact, very compet-
itive.

By move 20, Stockfish rated the board as 0.0 and if this
wasn’t interesting enough by itself, by move 50 the board
was rated as 0.0 again! Since both parts wouldn’t ask for a
draw (for experimentation purposes), the game kept going and
eventually Alpha-Beta started gaining the upper-hand, leading
to a victory.

The second game, where Alpha-Beta played as black, was
very open. In move 16 many pieces have already been ex-
changed, including the queens. Unfortunately, for chess.com’s
AI, it was already in a bad spot at this point, having material
disadvantage over Alpha-Beta (missing a knight and a pawn).
This lead to its defeat, which was an interesting looking
checkmate, composed of two pawns, a bishop and a rook,
as seen in Fig. 18.



80ZbZ0j0s
7s0onZpo0
6po0aplBZ
5Z0ZpZ0Zp
40Z0O0Z0Z
3Z0M0OQZP
2POPZ0OPZ
1S0A0ZRJ0

a b c d e f g h

Fig. 17. Game 5 - Alpha-Beta (white) vs Difficulty 4 (black) - Move 14

80Z0ZkZ0Z
7opZ0m0Z0
60Z0ZPZ0Z
5ZPZbZ0Zp
4RZ0O0o0Z
3Z0Z0Z0ZK
20Z0Z0Z0Z
1Z0Z0Z0Zr

a b c d e f g h

Fig. 18. Game 6 - Difficulty 4 (white) vs Alpha-Beta (black) - Move 33

Now, the games where chess.com’s AI played in difficulty
5. The first game (and the only game Alpha-Beta won) had a
very questionable opening strategy by chess.com’s AI (playing
as black).

The opening was Zukertort Opening: Queen’s Gambit In-
vitation or more simply put: Queen’s Pawn Game (1. Nf3 e6
2. d4 c5 3. dxc5). Typically, the next move by black would
be either 3. Nf6 (suggested by Stockfish) or 3. Bxc5 as seen
in [20] and [21], but in this game Qa5+ was played, which
was followed by 4. Bd2 Qd8 5. Bc3 h6. This is not a good
choice, since there is a momentum loss that comes with it.

After that, another questionable move was made by black.
In the position described in 20, instead of 15. d6, black gave
up a rook playing 15. Rb5. This lead to a big material loss.
Now black had a bishop for a rook, and two less pawns. These
bad choices cause chess.com’s AI to eventually lose the match.

In the second game, it was Alpha-Beta (playing as black)
that made a big mistake. In the position pictured in Fig. 22,
Alpha-Beta played 40. Re2, giving the rook and the game for
free. The recommended move by Stockfish 11 was 40. Rd2,
which makes sense and is a way better option.

80sblka0s
7Z0ZpZpo0
6pZpZ0m0Z
5Z0O0A0Z0
40Z0ZPZ0o
3Z0ZBZQZP
2POPM0OPZ
1S0Z0J0ZR

a b c d e f g h

Fig. 19. Game 7 - Alpha-Beta (white) vs Difficulty 5 (black) - Move 14

80Z0Z0ZkZ
7Z0Z0Zpo0
6PZ0Z0Z0Z
5Z0o0o0Op
4pZ0ZpZ0O
3Z0Z0O0Z0
20Z0Z0s0Z
1J0Z0S0Z0

a b c d e f g h

Fig. 20. Game 8 - Difficulty 5 (white) vs Alpha-Beta (black) - Move 40

This was unexpected, so it was worth investigating. The first
step was to see if this was reproducible and it was. Minimax
by it self analyzed 43952 complete game lines (depth 4), while
Alpha-Beta analyzed 7023. As expected, both return the same
move.

Since the behavior was strange, the next natural step was
to see if this move was, in fact, what the algorithm believed
to be the best. Looking at Table IV it’s possible to see that it
is (following its criteria) the best option.

Move Eval Move Eval
Re2 165 Rh2 180
Rf1 170 Rd2 180
Rb2 170 Kh7 185
Ra2 170 Kh8 185
a3 170 g6 190
Rf4 170 f5 190
c4 170 Kf8 195
Rc2 175 Rf3 195
Rf5 175 f6 200
Rg5 175 Rf6 400

TABLE IV
POSSIBLE FIRST MOVES AND THEIR OUTCOME



Because Alpha-Beta was playing as black, the lower its
evaluation is, the better the move is considered.

With this analysis, it’s possible to conclude that the cause
of this behavior was the lack of depth to see the best move or
at least a better one.

In the next game, chess.com’s AI (playing as black) crushed
Alpha-Beta with a powerful attack in the king’s side. Fig.
22 shows how the attack started and Fig. 23 pictures the
checkmate, which happened in move 40.

80Z0sklns
7ZpZ0ZpZ0
60MpZ0ZpZ
5Z0Z0a0Z0
40oQZPZpZ
3Z0Z0Z0Z0
2PZPZ0OPZ
1S0A0ZRJ0

a b c d e f g h

Fig. 21. Game 9 - Alpha-Beta (white) vs Difficulty 5 (black) - Move 24

80Z0ZkZnZ
7ZpZ0ZpZ0
60MpZ0ZpZ
5Z0Z0Z0Z0
40oQZPZ0Z
3Z0Z0Z0a0
2PZPZ0Z0s
1ZRArZKZ0

a b c d e f g h

Fig. 22. Game 9 - Alpha-Beta (white) vs Difficulty 5 (black) - Move 40

The final game had an interesting board structure for both
sides, as pictured in Fig. 23. Alpha-Beta was threatening Bh3
(move that eventually happened) and put a lot of pressure
throughout the game. Unfortunately it had a bad exchange,
losing a bishop in the process, helping its ultimate defeat.

The pgn of the final game is: 1.d4 Nc6 2.Nf3 Nf6 3.h3
e6 4.c4 Bb4+ 5.Nbd2 O-O 6.Qc2 d6 7.Qb3 Ne4 8.e3 Bxd2+
9.Nxd2 Na5 10.Qa4 Nxd2 11.Bxd2 Nc6 12.Bd3 Qf6 13.Bc3
Ne7 14.O-O e5 15.Rfe1 Qg5 16.Qb3 Rd8 17.Qc2 Bxh3
18.Bxh7+ Kh8 19.Be4 Bc8 20.Bd3 Bh3 21.f3 exd4 22.f4
Qxg2+ 23.Qxg2 Bxg2 24.exd4 Nd5 25.Bd2 Bf3 26.Kf2 b5

27.b3 bxc4 28.bxc4 Nxf4 29.Bxf4 Bc6 30.Be3 Rab8 31.Reb1
Rxb1 32.Rxb1 Kg8 33.Bf5 Re8 34.a3 d5 35.c5 g6 36.Rg1
Rb8 37.Bxg6 Rb2+ 38.Kf3 Kf8 39.Bh6+ Kg8 40.Bf5+ Kh8
41.Bg7+ Kg8 42.Bf6+ Kf8 43.Rh1 Rb3+ 44.Kf2 Rb2+ 45.Kg3
Rb3+ 46.Kf4 Rh3 47.Bxh3 a6 48.Bg4 a5 49.Bf5 Bd7 50.a4
Kg8 51.Rh8# 1-0

8rZbZ0skZ
7opo0mpop
60Z0o0Z0Z
5Z0Z0o0l0
40ZPO0Z0Z
3ZQABO0ZP
2PO0Z0OPZ
1S0Z0S0J0

a b c d e f g h

Fig. 23. Game 10 - Difficulty 5 (white) vs Alpha-Beta (black) - Move 16

With a better evaluation function (one that takes into ac-
count pawn-structures, number of pieces defending important
positions or other pieces, attack strategies and other additions),
a opening book, end-game book and a multi-threaded system
to increase the depth without causing the algorithm to run very
slow, it’s possible to beat a few more levels of difficulty.

For what was implemented in this study, being able to beat
Difficulty 4 and even get one match in Difficulty 5 is a very
nice result, since the algorithm is very simple and uses only
very basic principles to play.

4) Mate-in-3 Puzzles: As expected, Minimax with depth
5 was enough to solve all the mate-in-3 puzzles consistently,
since it can see the checkmate in its search tree.

Here are the solutions provided by Minimax to the
puzzles described (the opponent is Stockfish 11, but this is
meaningless, since the checkmates are guaranteed).

1. Rg8+ Qxg8 2. Qxh6+ Qh7 3. Qxh7# 1-0
1. Qxd7+ Rxd7 2. Rc8+ Rd8 3. Bb5# 1-0
1. Qd8+ Kxd8 2. Bg5+ Ke8 3. Rd8# 1-0
1. Rxd8+ Rxd8 2. Qe6+ Kf8 3. Nd7# 1-0
1... Rxh2+ 2. Kxh2 Qg3+ 3. Kh1 Qh3# 0-1
1... Qxh2+ 2. Kxh2 hxg3+ 3. Kg2 Rh2# 0-1

This holds true for mate-in-x. Given enough depth, Minimax
will be able to perfectly checkmate every time. This also
reflects what was discussed in the METHODS section: if a
game is simple enough to the point where the computer can
generate the complete tree of movements in an acceptable
time, perfect play is viable. Mate-in-x puzzles are one of these
“simple enough games” for a low x.



V. CONCLUSIONS

It took around 180 years since the initial documented
interest in creating an artificial chess opponent until a true
chess artificial intelligence, that could play a full chess game,
was developed.

This paper discussed about the path that led to Minimax
and how in the latest years it has become less present in new
engines, since new techniques like MCTS were developed and
applied to chess. Nevertheless, Minimax is still a powerful tool
in decision making and is worth studying. This is specially true
if the implemented algorithm uses Alpha-Beta pruning, since
Stockfish, which is one of the strongest chess engines, uses
this technique.

Alpha-Beta pruning reduces significantly the amount of time
required to process the next best move. Comparing Alpha-Beta
Minimax with its naive counterpart using depth 4 showed a
improvement of over 90% in time consumption. Since it adds
basically no complexity to the code (in terms of how difficult
the implementation is), while giving the same results, there’s
no reason not to do it in a chess engine.

Heuristics are fundamental when dealing with scenarios
where a full game search tree isn’t possible, which is the
case of a standard chess game. Therefore, choosing the most
adequate heuristic is a decisive factor on how strong a chess
engine will be. It’s also worth mentioning that, contrary to
what was implemented in this paper, heuristics do not need
to be static. They can be selected and modified on demand,
depending on the situation.

There are multiple ways to search for the best heuristics,
but the two most relevant today are domain knowledge and
reinforcement learning, the latter requires a huge amount of
computer power, while the former depends solely on how
much human knowledge about the game is put into it.

Like shown in one of the experiments, in a very limited
depth scenario, the evaluation function is more important than
having more depth and a inferior evaluation function.

As it was tested, even a basic heuristic is already able
to play acceptable games. Alpha-Beta with depth 4 against
chess.com’s AI in difficulties 4 and 5 lead to very structured
games, with interesting positions that are worth analyzing.

Those games also have shown the limitations that come with
a small depth or insufficient evaluation function, like the free
rook move by Alpha-Beta or even the questionable opening
by chess.com’s AI.

Finally, it was shown that in an environment where Minimax
has enough depth to see perfect play (mate-in-x puzzles), it
will consistently do it no matter how non-intuitive it might
seem to a human player. In the history of chess, there were
very sophisticated forced checkmates in a big number of
moves and with enough depth (same number as the number of
required half-moves), Minimax would do all of them without
problems.

REFERENCES

[1] https://en.chessbase.com/post/komodo-9-odds-matches-against-gms
[2] https://www.chess.com/news/view/smerdon-beats-komodo-5-1-with-

knight-odds
[3] Greg Brockman and Vicki Cheung and Ludwig Pettersson and Jonas

Schneider and John Schulman and Jie Tang and Wojciech Zaremba
(2016), “OpenAI Gym”, arXiv:1606.01540 [cs.LG]

[4] https://www.dw.com/en/world-chess-champion-magnus-carlsen-the-
computer-never-has-been-an-opponent/a-19186058

[5] Bradley Ewart (1980). “Chess, man vs. machine”. A S Barnes Co. ISBN
0-498-02167-X.

[6] Schaeffer, Jonathan (1997). “One jump ahead”. Springer. pp. 90. ISBN
0-387-94930-5. Retrieved 2009-03-10. “ajeeb chess.”

[7] Sunnucks, Anne (1976). “The Encyclopaedia of Chess”. London: Hale.
p. 314. ISBN 0-7091-4697-3.

[8] Williams, Andrew (2017). “History of Digital Games: Developments in
Art, Design and Interaction”. CRC Press. ISBN 9781317503811.

[9] https://www.livinginternet.com/i/ii wiener.htm
[10] Claude Shannon (1949). “Programming a Computer for Playing Chess”,

The Computer History Museum
[11] https://www.history.com/news/in-1950-alan-turing-created-a-chess-

computer-program-that-prefigured-a-i
[12] Beal, D. F. (1982), “Benefits of Minimax Search” In: Advances in Com-

puter Chess, Page 17-24, Elsevier BV, https://doi.org/10.1016/B978-0-
08-026898-9.50005-X

[13] Harris L.R. (1983) “The heuristic search: An alternative to the al-
pha—beta minimax procedure.” In: Frey P.W. (eds) Chess Skill in Man
and Machine. Springer, New York, NY. https://doi.org/10.1007/978-1-
4612-5515-4 7

[14] David Silver and Thomas Hubert and Julian Schrittwieser and Ioannis
Antonoglou and Matthew Lai and Arthur Guez and Marc Lanctot and
Laurent Sifre and Dharshan Kumaran and Thore Graepel and Timothy
Lillicrap and Karen Simonyan and Demis Hassabis (2017), “Mastering
Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm”, arXiv:1712.01815 [cs.AI]

[15] http://mathematics.chessdom.com/shannon-number
[16] Russell, S. J., Norvig, P., Davis, E. (2010). “Artificial intelligence: a

modern approach”. 3rd ed. Upper Saddle River, NJ: Prentice Hall.
[17] https://github.com/HariSurayagari/Computer-Chess-using-Genetic-

Algorithm
[18] https://www.chessprogramming.org/Simplified Evaluation Function
[19] https://www.chess.com/play/computer
[20] https://www.chessgames.com/perl/chessgame?gid=1945827
[21] https://www.chessgames.com/perl/chessgame?gid=1167852


