
An analysis of Treap

Felipe Vaiano Calderan ∗

Federal University of São Paulo (UNIFESP)

July 2022

Abstract

Treap is a binary search tree that bets on the unifor-
mity of a random distribution of items at the time of
insertion. The bet is that by entering items in this
way, a relatively balanced tree can be built, with-
out the extra cost of algorithmically calculating and
balancing the tree. It is also worth mentioning that
treap has this name because it is a fusion of tree and
heap, since the conformation of the items in the tree
follows the rules of both binary search trees and bi-
nary heap trees. In this article, we will analyze the
complexity and CPU time of the operations of in-
serting, searching and removing items from the treap
tree, in addition to comparing it with other search
methods, specifically linear, binary, binary tree, AVL
tree search and red-black tree.

Contents

1 Introduction 1

2 Treap 2
2.1 Insertion 3
2.2 Search 3
2.3 Deletion 3

3 Implementation 4
3.1 Data Structures 4
3.2 Main Function 4
3.3 Search Algorithms 5

∗fvcalderan@gmail.com

3.4 Array Generation Tool 6

4 Computational Environment 6
4.1 Computer Specifications 6
4.2 Array Set 7

5 Tests 7
5.1 CPU Time and Comparisons for each

array type 7
5.2 Ordered 7

5.2.1 Inversely Ordered 7
5.2.2 Almost ordered 8
5.2.3 Randomly Ordered 8
5.2.4 All arrays 9

6 Conclusion 10

1 Introduction

It is extremely uncommon for data entries to be alone
or completely segregated from each other. What you
see in practice are data sets referring to measure-
ments and/or enumerations on a common topic, such
as: a set of students in a school, Bitcoin values in
the last 6 months or the different characteristics of
copper crystals. The sets can then be processed by
algorithms or functions for arbitrary purposes, like
visualization or prediction. This shows that sets are
as relevant in computer science as they are in math-
ematics.

Of course, sets need to be constructed at some
point, and over time the elements that make up

1

such sets can change through insertions and dele-
tions. Furthermore, it is quite common that algo-
rithms need to check the existence of certain items in
the set or obtain values associated with the index de-
marcated by the element. Structures that serve this
purpose are known as dictionaries [5].
Searching for items in sets can be the most time-

consuming operation of many programs, so a myr-
iad of algorithms has been developed over the years
aiming to organize the sets so that searches are less
costly. Formally, a search operation can be defined
as a function f(x) that searches for the key x in the
set f [7]. The function then returns the element as-
sociated with the key x, if it exists, or null/error if
the element is not present.
One of the most common frameworks for this pur-

pose are binary search trees (BST). Such trees are
linked items, where each internal node has 2 chil-
dren: a left child, whose key value is less than the
parent’s key value, and a right child, whose value is
greater. Children are roots for other binary lookup
trees unless they are leaves. This allows for paths of
nodes to be followed so that the values of the keys of
the nodes get closer and closer to the searched key,
similarly to how it is done in an array binary search.
The main challenge with this approach is to insert

the items in a way that makes the tree as low as
possible (no matter how wide). This is because the
worst case scenario to fetch an element by its key is
to walk from the root to the farthest leaf possible,
that is, it is an operation of complexity O(h). If any
insertion policy is applied, there may be cases where
inserting items of the set N in ascending/descending
order results in a tree where h = |N | (a degenerated
or pathological tree [8]).
The best-case scenario for a BST structure is for

it to be perfectly balanced (minimum height possi-
ble) [6], but in practice, balanced trees (heights of
the left and right subtrees of any node have a maxi-
mum difference of 1) are ideal enough. To avoid the
generation of pathological or quasi-pathological trees,
different policies were developed to keep the initial
formation of the BST and their subsequent main-
tenance (insertion and removal of items) balanced.
Adelson-Velsky and Landis (AVL) [9] and the Red-
Black [5] trees are two very famous implementations

of this idea. For every node addition and, they use
logical and arithmetical procedures to recognize when
rotations should be applied to the nodes to achieve
structure balancing.

Unfortunately, these operations to analyze poten-
tial rotations to keep the tree balanced at all costs
are not free, as they add up increasing the general
complexity of the algorithm. To deal with this prob-
lem, there are algorithms that provide a compromise
of structural balance and performance. One of these
algorithms is the Treap, which bets on the uniformity
of a random distribution of items to build a relatively
balanced tree.

2 Treap

Cormen et al. [5] shows that the complexity of search-
ing for a key in a randomly built BST is expected to
be of order O(logn) by proving Theorem 1. This
complexity for the search operation is the same on
a perfectly balanced tree. This is very interesting,
but a problem exists: there is no way to guarantee
that the items inputted have a randomly ordered key,
and even if you could shuffle the initial insertions, the
subsequent insertions may not be random.

Theorem 1 The expected height of a randomly built
BST on n keys is O(logn)

To solve this problem, Aragon and Seidel [1] pro-
posed the Treap (a portmanteau of tree and heap).
It is a binary tree where each node typically stores
everything a binary tree search would store (point-
ers to children and an item with some content and
a key), but also a priority value. This priority value
is assigned at insertion time, so the risk of losing the
randomness is not present. The nodes are organized
in a BST fashion in relation to their keys, but the pri-
ority values follow a heap pattern, that is, considering
a min-heap, the children will always have smaller pri-
ority values than their parent. Figure 1 exhibits an
example of a Treap.

When inserting or removing nodes, the procedure
is identical to the standard BST, but the algorithm
needs to take the priority values into consideration,
since they can end up disrespecting the heap rule.

2

14
21

6
32

19
45

3
41

10
49

13
65

15
59

Figure 1: An example of a Treap. Red values are the
keys and the blue ones are the priority. This Treap
uses a Min-Heap to set up the priority values

If this happens, rotations need to be performed to
correct the tree. It is also worth mentioning that, in
addition to node insertion and deletion operations,
the usage of Treaps allow for fast union, intersection,
and difference operations on ordered sets [2], which
can be an interesting feature for many applications.
The space complexity of the Treap is O(n), since all

the data and metadata needed are inside the nodes.
The following subsections analyze the time complex-
ity of inserting, searching for, and deleting elements
from the tree. Table 1 displays a summary of best, av-
erage and worst-case scenarios complexities for these
operations.

Complexity Best Average Worst
Space O(logn) O(logn) O(n)
Insertion O(logn) O(logn) O(n)
Search O(logn) O(logn) O(n)
Deletion O(logn) O(logn) O(n)

Table 1: Summary of the complexities of operations
on the Treap

2.1 Insertion

Inserting an item in a Treap can be thought as in-
serting an item in a BST and then inserting an item

in a binary heap [4]. The analyses below take this
fact as a basis for calculations.

The best-case scenario is when the tree is per-
fectly balanced. Both BST’s and heap’s insertion
time complexity is O(logn), since the only thing
needed is to traverse the tree until the correct spot
for the insertion is reached. Therefore, the complex-
ity for inserting an element, in the best-case scenario,
in a Treap is T (n) = 2 ·O(logn) = O(logn).

Using Theorem 1, it is possible to conclude that
the average-case scenario for the insertion opera-
tion has a complexity of T (n) = 2O(logn) = O(logn),
since the expected height of the BST (and heap, by
consequence) is O(logn). Then the same logic as
above applies.

Finally, the worst-case scenario happens when
the tree ends up being pathological, which is increas-
ingly unlikely as the tree grows, but is always pos-
sible. To insert an element in a BST of with this
structure, the complexity is O(n). Although heaps
are almost complete (therefore cannot be pathologi-
cal), the Treap takes primarily the BST structure into
consideration, so the worst-case is inherited from the
BST complexity, that is, O(n).

The rotations are irrelevant to the complexity,
since elements can go from leaf to root in a time com-
plexity of O(1).

2.2 Search

The best, average and worst-case scenarios for search-
ing a key is the exact same as inserting, since the cost
of inserting an item is primarily dependent on the
cost of traversing the BST looking for the right place
to insert it, considering its key. The heap part of the
logic is irrelevant for the search operation, since the
heap deals with the priority values, not the keys.

2.3 Deletion

Deletion procedure works by searching for the item
to be deleted by its key, if it’s found, delete it and
restructure the tree so that it respects Treap rules.
Since deletion can be thought as the insertion op-
eration backwards [1], the complexities for the best,

3

average and worst-case scenarios are, again, the same
as the insertion ones.

3 Implementation

The complete code for this project (the search algo-
rithms and the functions to execute the various tests)
is too extensive to display in details here, therefore,
this paper focuses on the general structure of the
project and the Treap.
All the algorithms and testing procedures were

written in the C language, since the resulting binary
compiled by GCC runs very fast. No 3rd party li-
braries were used in the implementation.

3.1 Data Structures

Looking at the code and extracting the data struc-
tures in a more abstract way, we have 3 core struc-
tures:

• TreapNode: each node in a Treap. It contains
the item (of type TreapItem, priority values and
pointers to the children, which are TreapNodes

themselves.

• TreapItem: each TreapNode contains an item
that stores the key and content to be indexed by
the tree. In the real program, there is no content,
since it is irrelevant to the tests ran.

• Dictionary: an abstraction for the root of the
Treap. It can also store metadata, if needed, like
the size of the dictionary. It is superfluous in this
specific case.

The naming scheme is different from the one used
in the source code, for abstraction, styling, and lan-
guage purposes. To avoid confusion, Table S1 is pro-
vided in the Supplementary Information describing
the correspondence between the name schemes. Fig-
ure 2 shows the UML diagram related to the abstract
data types described.

TreapNode

+ Item: TreapItem

+ Priority: Int

+ Left: TreapNode

+ Right: TreapNode

Use

TreapItem

+ Key: Int

+ Content: Variant

Dictionary

+ Root: TreapNode
Use

Figure 2: UML diagram for the data structures
present in the Treap program

3.2 Main Function

Before discussing the main function, it is important
to inform that the sorting algorithms are segregated
into different files and each one of them have a main
function. All the main functions are virtually the
same. The project is organized this way to avoid
dealing with renaming the data types for each algo-
rithm (since they have different information in the
tree nodes, for example).

The Main function takes care of the input and out-
put of the program, as well as calling and timing the
insertion, search, and deletion procedures. The input
is composed of 2 pieces of information: the path of the
binary file containing the integers values to populate
the array of elements to be inserted/searched/deleted
from the tree and the size of this array. The out-
put is displayed in the standard output formatted
as a CSV file [10]. The columns are: the algorithm
name (algorithm), array file path (file), size of the
array (size), number of comparisons when adding
(add c), searching for (look c) and deleting (del c)
elements and the respective CPU times for the oper-
ations (add t, look t and del t), respectively.

The CPU times were obtained through the use of
the function clock t clock(void)1 from the time.h
Unix library. This function returns an approximation
of processor time used by the program. To find the
value in seconds, the clock t value is divided by the
CLOCK PER SEC definition. Figure 3 shows the Main
function’s flowchart.

1man 3 clock

4

Start

Read arguments

Load array

Add elements to
dictionary

Search elements
in the dictionary

Delete elements
from the

dictionary

Cleanup memory
and return

success

Terminate

Compute number of comparisons and CPU Time

Figure 3: Main function’s flowchart

3.3 Search Algorithms

In total, six different search algorithms are imple-
mented in the project: linear, binary, binary tree,
AVL tree, Red-Black tree and Treap. The insertion,
search, and deletion functionalities of each algorithm
are abstracted away by a Dictionary type, which has
3 core functions: insert, search and remove. This lets
the program have a common interface to talk to the
algorithms, no matter which one it is.
All the implementations can be found inside the

repository provided in the Supplementary Informa-
tion. In this paper, only the Treap implementation
will be discussed, since it is the algorithm being an-
alyzed.
The functions here follow a different name scheme

from the source code provided, for the same rea-
sons as the data structures. To avoid confusion, Ta-
ble S1 is provided in the Supplementary Information
describing the correspondence between the different

schemes.
The implemented Treap has 6 core functions:

InitializeNode, LeftRotation, RightRotation,
Insert Node, SearchNode and RemoveNode. High-
level versions of these functions are described here.

Algorithm 1 InitializeNode

Require: TreapNode N , TreapItem x
Ensure: N is properly initialized and contains x
Allocate memory for N
N.Item← x
N.Priority ← Random
N.Left← NIL
N.Right← NIL
return N

Algorithm 1 is used to create new nodes and, con-
sequently, to create a new tree, since if the node
is the first one, it is the root. It has complexity
O(1), because it only attributes values to the allo-
cated TreapNode properties.

Algorithm 2 LeftRotation

Require: TreapNode N
Ensure: A left rotation is performed

M ← N.Right
N.Right←M.Left
M.Left← N
N ←M
M ← N.Left
return N

The RightRotation algorithm is identical to Algo-
rithm 2 swapping Right for Left and vice-versa. A
rotation is a very straightforward operation with time
and space complexity O(1), since it basically consists
of pointer manipulation.

Algorithm 3 guarantees that an Item is correctly
inserted into the Treap, by performing the rota-
tions needed to make the whole tree follow the
Treap rules. This algorithm has an average com-
plexity of O(logn), as discussed in Section 2.1. Even
though it calls InitializeNode and LeftRotation

(or RightRotation), those operations are O(1), thus,
they make no difference in asymptotic terms.

5

Algorithm 3 InsertNode

Require: TreapNode N , Item x
Ensure: Item x is inserted in the N -rooted tree

if N is NIL then
return InitializeNode(N)

end if
if x.Key < N.Item.Key then

N.Left← InsertNode(N.Left, Item.Key)
if N.Left.Priority < N.Priority then

N ← RotateRight(N)
end if

else
N.Right← InsertNode(N.Right, Item.Key)
if N.Right.Priority < N.Priority then

N ← RotateLeft(N)
end if

end if
return N

The Search Node function, exhibited in Algorithm
4 is the exact same as of a conventional BST. The
search is performed by recursively accessing the Left
and Right children of each node. If at any point, the
node with the correct Key is found, it is returned.
The search can also fail if a NIL node is reached,
in which case NIL is returned. The time complex-
ity of this function directly dictates the complexities
of InsertNode and RemoveNode. It is O(logn) in
the best and average-case scenarios and O(n) in the
worst-case one.
Finally, Algorithm 5 removes an element from the

Treap and has an average time complexity ofO(logn).
This is the longest and most complex function im-
plemented. It searches for the item to be removed,
then, if it is found, the removal occurs. When there is
a node removal, the tree may need to be rebalanced
(rotations may need to be performed). If the wanted
node is not found, NIL is returned.
Those are all the core functions that compose the

Treap. This tree removes much of the complexity
that AVL and Red-Black add when inserting and re-
moving nodes. For the complexity analyses and im-
plementation in the C language of Treap’s set opera-
tion algorithms, the reader is referred to Blelloch and

Algorithm 4 SearchNode

Require: TreapNode N , Item x
Ensure: x is returned, if found

if N is NIL then
return NIL

end if
if N.Item.Key = x.Key then

return N
end if
if x.Key < N.Item.Key then

return SearchNode(N.Left, x)
else

return SearchNode(N.Dir, x)
end if

Reid-Miller’s paper [2].

3.4 Array Generation Tool

In Subsection 3.2, it was mentioned that the program
loads a binary file into an array. This file needs to
be generated in the first place, so an array genera-
tion tool was built for this purpose. More details are
available in the Comb Sort analysis paper [3].

4 Computational Environment

4.1 Computer Specifications

The environment used to compile the program and
run the tests has the following specifications:

Hardware:

• CPU: 1 Core of AMD EPYC 7551

• RAM: 1GiB DIMM RAM

Software:

• OS: Ubuntu 20.04.4 LTS

• KERNEL: Linux 5.13.0-1018-oracle

• GCC: 9.4.0

6

Algorithm 5 RemoveNode

Require: TreapNode N , Item x
Ensure: x is removed, if found
if N is NIL then

return NIL
end if
if N.Item.Key = x.Key then

if N.Left = NIL and N.Right = NIL then
return NIL

else if N.Left = NIL then
return N.Right

else if N.Right = NIL then
return N.Left

else
NLP ← N.Left.Priority
NRP ← N.Right.Priority
if NLP < NRP then

N ← RotateRight(N)
N ← RemoveNode(N.Right, x)

else
N ← RotateLeft(N)
N ← RemoveNode(N.Left, x)

end if
end if

else if x.Key < N.Item.Key then
N.Left← RemoveNode(N.Left, x)

else
N.Right← RemoveNode(N.Right, x)

end if
return N

4.2 Array Set

The arrays generated have the following characteris-
tics:

• 10 seeds for the random number generator

• 4 modes: ordered, inversely ordered, almost or-
dered and random

• 6 sizes: 10, 100, 1000, 10000, 100000 and
1000000 elements

where almost ordered arrays have 1% of their ele-
ments (when possible) at the wrong places.

The array set contains the combination of all the
above characteristics, adding up to 10 · 4 · 6 = 240
different arrays.

5 Tests

In this section, different charts displaying the time
taken and number of key comparisons made by each
algorithm are presented. The values shown in these
charts are given by Tm = Im+Sm+Dm, where m can
be either c or t (c is the number of key comparisons
and t is the CPU time taken) and I is insertions, S is
searches and D is deletions. In other words, it’s the
sum of the 3 operations. Also, the values presented
are the average between the value received from all
10 different seeds of the random number generator.
Charts for each operation individually were generated
and are in the Supplementary Information for this
article.

5.1 CPU Time and Comparisons for
each array type

5.2 Ordered

From Figures 4 and S1, it is possible to see that, for
the ordered arrays, even though the Treap ends up
making more comparisons than the AVL tree, Red-
Black tree and binary search, it actually performs
better than all of them (specially comparing with the
binary search) in terms of CPU time consumption.

The competition between AVL, Red-Black and
Treap is going to be a common theme here, since
they all perform similarly. On the other hand, linear
search, binary search and binary tree search tend to
be slower.

It is worth noting that the charts are in log10 scale,
so even though in Figure 4 it seems like the binary
search is not much worse than the Red-Black tree, it
is orders of magnitude worse.

5.2.1 Inversely Ordered

Looking at the inversely ordered arrays (Figures 5
and S2, It is possible to see a very similar pattern to

7

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
tim

e
ta

ke
n

(s
)

Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure 4: Average CPU time taken (Ordered arrays)

ordered arrays. Treap makes slightly more key com-
parisons than the AVL tree, but ends up perform-
ing better in terms of CPU time (being, overall, the
fastest). Again, AVL, Red-Black and Treap are very
close.

5.2.2 Almost ordered

In the case of almost ordered arrays, depicted in Fig-
ures 6 and S3, Treap does not beat AVL, neither in
terms of comparisons, nor in CPU time. AVL is the
best in this category, but not by much. Treap and
Red-Black actually switch places in relation to better
and worse than one another as the size of the arrays
grow. When the biggest size tested is reached, they
end up extremely close, Treap being the best between
the two in terms of CPU time, but worst in key com-
parisons.

5.2.3 Randomly Ordered

Figure 7 shows that, for completely random arrays,
the best algorithm, in terms of CPU time, is actually
the BST, which makes sense, since all the sets before

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
tim

e
ta

ke
n

(s
)

Inversely Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure 5: Average CPU time taken (Inversely ordered
arrays)

this one lead to the worst-case scenario for this tree
(they are sequential or almost sequential, therefore
generate pathological trees).

In this case, the BST wins by generating trees that
were sufficiently balanced (as discussed before, ran-
domly created trees tend to automatically balance
themselves) without the expense of manually balanc-
ing them every insertion or deletion.

An argument could be made that Treap should
have performed just as well as the BST, since it also
works with randomness. This is not the case, since,
although the Treap performs pretty much the same
amount of key comparisons as the BST (Figure S4),
it also has the overhead of organizing the tree accord-
ing to BST and Heap properties. This leads to extra
workload comparing priority values, which end up in-
creasing the CPU time. In this case, it performed
worse than AVL and Red-Black, as well.

8

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
tim

e
ta

ke
n

(s
)

Almost Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure 6: Average CPU time taken (Almost ordered
arrays)

5.2.4 All arrays

When looking at the general performance of the al-
gorithms, the Treap performs extremely close (being
slightly worse) to the Red-Black tree, both in number
of comparisons and CPU time. The AVL tree is the
overall best choice for the type of tests ran in this
paper.
Analyzing Figures S6, S7 and S8 from the Supple-

mentary Information, it is visible that the Treap does
an overall worse job than the AVL tree. It does beat
the Red-Black on insertion operations, but by a very
small margin.
Two interesting observations are that the binary

search is very efficient performing search operations,
while the BST performs poorly at it, but when look-
ing at deletion operations, it is the opposite. One
other fact to be observed is that the linear search
performs badly in every single test executed (it is
always O(logn)), so this search algorithm is only rec-
ommended for very small arrays, and even then, the
binary search may be an overall better choice.

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
tim

e
ta

ke
n

(s
)

Randomly Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure 7: Average CPU time taken (Randomly or-
dered arrays)

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
tim

e
ta

ke
n

(s
)

avltree
binary
binarytree
linear
rnbtree
treap

Figure 8: Average CPU time taken (All arrays)

9

6 Conclusion

Searching elements in a set is a very common task
in computer science (since it is a part of many other
larger algorithms), hence, the more optimized it is,
the better. Having this in mind, many search algo-
rithms were developed, Treap being one of them.
Treap, which is a tree with both BST and Heap

properties, uses the fact that completely random dis-
tributions tend to be uniform, therefore inserting ele-
ments from a distribution like this lead to a relatively
balanced tree. This saves time by not running tree-
balancing operations, like AVL and Red-black trees
do.
The tests ran show that the Treap beats every

other algorithm tested when the arrays are ordered or
inversely ordered. It also does a very good job keep-
ing up with the best algorithms in almost ordered
and randomly ordered arrays, therefore, Treap’s bet
on randomness is not only supported mathematically,
but also empirically.
Given the results, it is recommended to use Treap

for ordered and inversely ordered arrays, AVL tree
for almost ordered arrays and conventional BST for
randomly ordered arrays. If there is no way to know
how the items are distributed beforehand, it is rec-
ommended to use the AVL tree, because it has the
best performance, on average.

References

[1] Cecilia R Aragon and Raimund Seidel. Random-
ized search trees. In FOCS, volume 30, pages
540–545, 1989.

[2] Guy E Blelloch and Margaret Reid-Miller. Fast
set operations using treaps. In Proceedings of
the tenth annual ACM symposium on Parallel
algorithms and architectures, pages 16–26, 1998.

[3] Felipe V Calderan. An analysis of comb sort.
2022.

[4] Igor Carpanese. A visual introduction to treap
data structure (part i: The basics). Medium,
2020.

[5] Thomas H Cormen, Charles E Leiserson,
Ronald L Rivest, and Clifford Stein. Introduc-
tion to algorithms. MIT press, 2022.

[6] RA Frost and MM Peterson. A short note on
binary search trees. The Computer Journal,
25(1):158–158, 1982.

[7] Donald Ervin Knuth. The art of computer pro-
gramming, volume 3. Pearson Education, 1997.

[8] Anand K. Parmar. Different types of binary tree
with colorful illustrations. Medium, 2020.

[9] Robert Sedgewick and Kevin Wayne. Algo-
rithms, 4th Edition. Addison-Wesley, 2011.

[10] Y Shafranovich. Common format and mime type
for comma-separated values (csv) files. 2005.

10

Supplementary Information

Type Name in the paper Name in the source code
ADT TreapNode TNo
ADT TreapItem TItem
ADT Dictionary TDicionario
Function InitializeNode TNo Inicia
Function LeftRotation RotacionaEsquerda
Function RightRotation RotacionaDireita
Function InsertNode InsereRecursivo
Function SearchNode PesquisaRecursiva
Function RemoveNode RetiraRecursivo

Table S1: Name scheme translation table for the abstract data types and functions in the paper and in the
source code

i

101 102 103 104 105 106

Array size

103

105

107

109

1011

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
#

 c
om

pa
ri

so
ns

Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure S1: Average number of key comparisons (Ordered arrays)

ii

101 102 103 104 105 106

Array size

103

105

107

109

1011

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
#

 c
om

pa
ri

so
ns

Inversely Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure S2: Average number of key comparisons (Inversely ordered arrays)

iii

101 102 103 104 105 106

Array size

103

105

107

109

1011

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
#

 c
om

pa
ri

so
ns

Almost Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure S3: Average number of key comparisons (Almost ordered arrays)

iv

101 102 103 104 105 106

Array size

103

105

107

109

1011

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
#

 c
om

pa
ri

so
ns

Randomly Ordered

avltree
binary
binarytree
linear
rnbtree
treap

Figure S4: Average number of key comparisons (Randomly ordered arrays)

v

101 102 103 104 105 106

Array size

103

105

107

109

1011

Ad
d

+
 S

ea
rc

h
+

 D
el

 -
av

g
#

 c
om

pa
ri

so
ns

avltree
binary
binarytree
linear
rnbtree
treap

Figure S5: Average number of key comparisons (All arrays)

vi

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Ad
d

el
em

en
ts

 -
av

g
tim

e
ta

ke
n

(s
)

avltree
binary
binarytree
linear
rnbtree
treap

Figure S6: Average of CPU time taken on insertion operations (All arrays)

vii

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

103

Se
ar

ch
 e

le
m

en
ts

 -
av

g
tim

e
ta

ke
n

(s
)

avltree
binary
binarytree
linear
rnbtree
treap

Figure S7: Average of CPU time taken on search operations (All arrays)

viii

101 102 103 104 105 106

Array size

10 5

10 3

10 1

101

D
el

 e
le

m
en

ts
 -

av
g

tim
e

ta
ke

n
(s

)

avltree
binary
binarytree
linear
rnbtree
treap

Figure S8: Average of CPU time taken on deletion operations (All arrays)

The complete source code for the project can be found here:
https://github.com/fvcalderan/TreapSearch analysis.

ix

https://github.com/fvcalderan/TreapSearch_analysis

	Introduction
	Treap
	Insertion
	Search
	Deletion

	Implementation
	Data Structures
	Main Function
	Search Algorithms
	Array Generation Tool

	Computational Environment
	Computer Specifications
	Array Set

	Tests
	CPU Time and Comparisons for each array type
	Ordered
	Inversely Ordered
	Almost ordered
	Randomly Ordered
	All arrays

	Conclusion

