IMAGE PROCESSING

Video Joystick

Felipe Vaiano Calderan,

Silvio de Souza Neves Neto

Federal University Of Sao Paulo (UNIFESP)

Abstract—Games have been around for around 60 years and
input methods have evolved together with the games themselves.
In the last decade, a big boom of movement detection based con-
trollers, with Nintendo Wii, Xbox Kinect, PlayStation Move/Eye
and others. Here, we document, briefly, the relevant history of
input devices that led up to where we are now and we propose an
input method that is completely controlled by image processing,
so that anyone with a sheet of paper and a webcam can build
their own joystick on the spot, without having to resort to the
computer keyboard or an external joystick. We also present an
analysis on the controller efficiency through video inspection, and
also user experience, by collecting opinions from different people
who tested the input method.

Index Terms—Image processing, computer vision, video, joy-
stick, games

I. INTRODUCTION

HE main point of video games is to create an interactive

environment where the player can, through an input
method, change the state of what is being displayed in a
monitor device.

The idea of creating an interesting input device have existed
since the very beginning of video game history with William
Higinbotham’s Tennis for Two [1], 1958. Observing Figure 1,
it’s possible to see that even in those days a proper controller
was created so that the game play factor was more enjoyable:
an analog dial to move the player and a push button to perform
actions.

Fig. 1. Tennis for Two modern recreation - Windell Oskay from Sunnyvale,
CA, USA, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via
Wikimedia Commons

Input methods are, in fact, so relevant they precede the
existence of video games. The first light guns appeared in
1930, enabled by, then, recent developments in light sensing
vacuum tubes. It wasn’t long after that light guns started being
used in arcade games [2]. This input method was later used in
very famous consoles, like the Nintendo Entertainment System

(as seen in Figure 2), Sega Master System, Atari, Inc., Sony
PlayStation, Sega Genesis and others.

Fig. 2. NES Zapper. By Evan-Amos - Own work, Public Domain
<https://commons.wikimedia.org/w/index.php?curid=50797667 >

The shape of the joysticks can also determine the preferred
kinds of games that will be played using them. Steering
wheels are made for driving games, fight sticks are typically
used for fighting games or classic arcade games that don’t
require analog input and flight sticks are made to play flight
simulators/arcade games. The opposite is also true: there are
games that determined the kind of preferred input methods
that will be used, because they were made with a specific
controller in mind.

Some input methods are more general, like keyboard and
mouse (which are typically used to play games using a
personal computer) and general-purpose joysticks, like Sony’s
Dualshocks/Dualsense or the Xbox One controller. They hap-
pen to be or are made to be effective in a wide variety of
games, which is a desirable feature to have, considering they
usually ship with the console and are the first experience the
player will have interacting with games in that console.

As technology evolved, the games evolved and so did the
input methods. The video game industry became more aware
that ergonomics [3] are a considerable selling point to a
console, therefore, better and more customizable controllers
began being produced. Recently, motion based inputs, that uses
computer vision (which is a subset of image processing) and
advanced camera techniques [4] became popular among the
players.

This big boom started with Nintendo Wii’s Wiimote,
launched together with Nintendo Wii in 2006. Nintendo Wii’s
bet wasn’t on powerful graphics, but rather on providing a
novel experience to its player base. The movement-based
controllers payed off, since Nintendo Wii sold over 100 million
units [5] (making it the fourth most sold console of all time).
Sony PlayStation 3 and Xbox 360 eventually caught up on
the technology of movement detection with the launch of
PlayStation Move/Eye and Kinect (for Xbox), both in 2010),
respectively. Although the technologies involved are different,

IMAGE PROCESSING

they accomplish similar objectives in respect to game play
factors.

Kinect (Figure 3), in special, uses a vision-based human
activity recognition system [6] based on a 3D depth camera.
It turned out to be applicable not only in gaming activities,
but also in many other fields [7], [4]. This kind of system is
technologically very advanced and require special equipment
(like the Kinect) to be executed properly, which differs from
the approach that we take to produce a new input method
based only on simple cameras.

Fig. 3. Evan-Amos -

Kinect. By
<https://commons.wikimedia.org/w/index.php?curid=33217678 >

Own work, Public Domain

Although the lens (and its capabilities) through which the
computer will see the world are defining factors on what kind
of computer vision systems are convenient to be built upon
them, a software to process the incoming data is also extremely
important, since it contains the logic that dictates what will
be done with what the cameras/sensors are seeing. There are
several studies that focus on identifying gestures, some use 3D
data like in [8] and others use novel methods, like Combined
Local-Global (CLG) optic flow [9]. It’s also typical to use
Machine Learning, specifically Neural Networks though Deep
Learning to identify patterns and infer information about the
data stream [10].

Sony’s approach to gesture detection on PlayStation 3 is
quite different: it is performed using 2 separate peripherals
(and of course, the PlayStation it self for the bulk processing).
The PlayStation Move is a motion controller that operates
using an Inertial Measurement Unit (IMU) [11], which con-
tains an Accelerometer (measures proper acceleration [12]),
an Angular Rate Sensor (has a very similar purpose of
Gyroscopes) and a Magnetometer (Calibrate the orientation in
relation to the Earth’s magnetic field). In general, PlayStation
Move works in a very similar way to Nintendo’s Wiimote. In
the other hand, the PlayStation Eye detects the general ambient
color to define the Move’s LED ball color. The color should
be very contrasting to the ambient in which the person using
the Move is in, since PlayStation Eye will use the size of
the colored ball to calculate the distance to the person and
also track the position, improving gestures calculations and
generalizing the different situations/ambient supported by the
PlayStation vision-based human activity recognition system.

The controller proposed in this article doesn’t try to rec-
ognize human gestures and attacks a different kind of games:
all the input methods cited above are targeted to games where
the person moves more than just their hands, whereas our con-

troller tries to replace conventional joysticks using computer
vision techniques (hence the name Video Joystick), therefore is
usable in general purposes, like Sony Dualshocks/Dualsense.
Create an easy-to-use system without special hardware and
that fits most kinds of games (specially those that require
fewer inputs, like platformers), while being completely Free
and Open Source Software is the biggest motivation for this
project.

II. OBJECTIVES

HE objective of this project is to create a compute

vision system capable of analyzing a video feed coming
from the computer’s webcam or other video capturing device'
and look for a sheet of paper with buttons drawn in order
to interpret them as a controller. Once the paper has been
properly identified, the computer should monitor the buttons
to verify if they weren’t obstructed by something. If there’s
an obstruction, it probably means that the person using the
controller is pressing a button.

Figure 4 shows an illustrative diagram of how the system is
built in a “hardware” perspective. After that, an enumeration
following the marks in the figure will explain what each part
is meant to be in the system.

® ®

o

Fig. 4. Camera and paper diagram

1) This is the webcam/video capturing device. It should
aim at the sheet of paper, ideally in a top-down view, so
that shadows and other kinds of obstructions/distractions
are minimized. To avoid unwanted shadows in the paper,
it’s also recommended that the strongest source of light
comes from the direction against the person using the
controller.

2) This is the sheet of paper. It should be a blank sheet
of paper with buttons printed. The colors of the buttons
are yet to be decided, but it’s very important that there’s
enough contrast between the paper color and buttons, so
things like light yellow buttons should be avoided

3) This is a button. Initially, we propose a simple system
that can deal with 4 circular buttons (see in subsction
II-I why), but this can be modified if needed. The
quantity 4 comes from the perspective on how many
old platform games work: they use two buttons to move
the character left and right, one to jump and another to
perform a miscellaneous action/pause the game. Ideally,

las long as it’s a valid video capturing device according to Linux definition
of a valid device, that is, correctly exposed in /dev/videoX where X is the
video capturing device.

IMAGE PROCESSING

all the buttons should be the same size, but if it’s not the
case, small changes to the source code or a more relaxed
search for contours features (discussed in subsection
III-G) should suffice.

We also provide a calibration tool to better configure the
algorithm’s parameters to fit the ambient lighting, distance
and angle between the camera and the sheet of paper and the
rotation of the paper. This calibration helps removing the noise
caused by the shadows or poor illumination, crop the video to
feed the computer only the necessary information (improving
both speed and quality).

To detect the buttons, image segmentation techniques are
applied to the video stream, so that the background ambient,
sheet of paper, buttons and obstructions are properly identified
and classified by the computer vision system. This makes
possible the creation of a logic that, given the incoming data,
tells which action the person using the Video Joystick is trying
to perform.

Finally, the project is built using open source software. This
is a very important factor to our project, since it’s of utmost
importance that Video Joystick’s hardware can be physically
built by anyone who has access to a sheet of paper and any
way to draw on this paper (preferably a computer printer, for
precision reasons), and any kind of computer that is able to
run Python and has an integrated/dedicated camera. Whether
it’ll be used to play games, operate a computer, embedded
device or for educational purposes is up to the person using
the controller.

III. METHODS

ERE are described all the frame image processing steps

in order to build meaningful data to evaluate button
presses. Each subsection’s result (except for the subsection
III-I) can be seen in Figure 6.

A. Matrix representation of an image

There are different ways to represent an image, but the usual
way is to use matrices. For gray scale image, a simple two-
dimensional matrix is enough to encode perfectly all the usual
256 values of gray. Take the left image depicted in Figure 5
for an example.

Fig. 5. a) 4x4 gray scale image; b) 4x4 colorful RGB image

It can be represented by the matrix 1:

0 7 928 63
7 28 63 112

9Ty =log 63 112 175 M
63 112 175 252

To represent a colored image, multiple channels are needed.
If the image is given by 3 channels: red, green and blue; it
can be represented by 3 distinct matrices or by just one matrix
where each element is a 3 element vector [13]. The last one is
the representation of choice, since it’s the way OpenCV? (the
most important library in this project) loads images. Matrix 2
shows how the right image in Figure 5 is represented.

[0,0,0] [0,64,32] [0,128,64] [0,192,96]
color = | [64:0:32] [64,64,64] [64,128,96] ~ [64,192,128] |y
[128,0,64] [128,64,96] [128,128,128] [128,192,160]
[192,0,96] [192,64,128] [192,128,160] [192,192,192]

If the image had an extra channel for alpha values, it would
need 4 element vectors instead.

B. Convert RGB to gray scale

The most usual method to convert a RGB image to gray
scale is to average the elements for each 3 element vector in
the matrix:

WG(r.y) - l?‘(W) * 9(a) Ty

3

J, V(z,y) eimg (3)

But Equation 3 is not the method being used by Video
Joystick. The one in use is shown in Equation 4, which is
a weighted version of the average [14]:

0.2997 (4 4y + 0.587g(p oy + 0.114b(z7y)J @

wG(z,y) = l 3

and the reason this version is being used is because this is the
standard on OpenCV.

C. Reducing noise with blur

Blur is an important filter to be applied here, since it reduces
the amount of noise (due to primarily low illumination levels)
in the video stream. An image with noise generates various
micro-contours and this has very bad side-effects in the step
III-G, since it uses statistical techniques to identify the correct
feature ranges of the buttons.

This kind of filters are applied to the image through a
convolution process. The generic formula for a convolution
process is given by Equation 5.

a b
g(zy)=wf(z,y)= > Y w(de,dy)f(z+ds,y+dy)
dr=—a

—a dy=-b
4)
where g(x,y) is the filtered image, f(x,y) is the original
image and w is the kernel. If the filter is an average blur [15],
w is given by the matrix 6:

1 1 1 1
1 11 - 11
a_blur = e T (6)
11 1 1
1 1 1 1

where the dimensions of a_blur (given by IN) defines a and
b for Equation 5.

Zhttps://opencv.org/

IMAGE PROCESSING

Contours Perimeter x Area Scatter

Perimeter

®

)

Fig. 6. Video Joystick’s image processing flowchart. It’s important to notice that the transformations are sequential. A) frame shown after transforming the
raw data into a matrix representation of an image; B) RGB to gray scale conversion; C) noise reduction through the application of a median blur kernel;
D) automatic image thresholding; E) contour finding based on the given threshold information; F) features area and perimeter extracted from each contour
and plotted; G) automatic button identification enabled by mathematical analysis of the extracted features; H) automatic video cropping through the use of a

bounding rectangle.

Since the focus is removing micro-contours in a thresholded
environment (which means it’s only black and white), a
parallel can be drawn with removing salt-and-pepper noise,
which is typically done by applying a median blur filter [15].
This kernel is given by the Equation 7:

m_blur(x,y) = median(neighbors(z,y)) 7

where neighbors(x,y) is, typically, a square of odd dimen-
sions. In this square, the element (x,y) is the center and
(x +dx,y + dy) are the neighbors.

D. Image thresholding

Image thresholding is a technique to transform a gray scale
image into a binary image, which are images that contain only
black and white pixels. Which pixels will become fully white
and which will become fully black depends on a threshold
value (if a pixel has a value above the threshold, it’ll white,
otherwise it’ll be black), hence the term image thresholding.

In many applications of image processing, the brightness of
the items in the foreground differ from the ones in the back-
ground, so thresholding is an excellent choice of algorithm
to segment the important elements from the unimportant ones
[16]. This is specially true for the controller that we propose
here, as it is composed of a white sheet of paper and dark-
colored buttons (the exact color doesn’t matter).

There are many thresholding techniques, but the most basic
one is given by the Equation 8:

255

dst(z,y) = { 0 if src(x,y) > thresh

otherwise

®)

where thresh is the threshold value. The inverted version of
this binarization algorithm is shown in Equation 9:

0 if sre(x,y) > thresh

255 otherwise ®)

dst(z,y) = {

which is the version used in Video Joystick (as seen in
Figure 6 item D) both because it looks distinct from the non-
thresholded images and because it follows OpenCV’s contour-
finding conventions®.

One big problem with the thresholding formulas 8 and 9
is that they need the thresh parameter specified, so there
must be a way to know it beforehand, otherwise the user
would have to set it manually and this is not ideal. To
solve this problem, we combined the inverse binarization with
Otsu’s algorithm (or Otsu’s method) [17]. This algorithm
determines the thresh value by minimizing the intra-class
intensity variance (therefore maximizing inter-class variance).
In other words, it finds ¢ that minimizes Equation 10

o (t) = @1 (t)ot +q2(t)o3 (1) (10)
where . ,
ai(t) = ;P(i); q2(t) = ';1 P(i)
iP(i) & iP(i)
i) = ; l(t) z(t)_i:;d q2(t)
PPO . oy S e op)
0= Xli-mOF L 0= Y - P

E. Contour finding

Contours are curves joining continuous points (along their
boundaries). As stated previously, OpenCV’s implementation
considers objects in the foreground as white and the back-
ground as black, so the inverted thresholded image is an ideal
scenario for contour finding.

The technique to identify contours need 3 distinct informa-
tion: image that needs its contours identified, retrieval mode
and contour approximation method.

3https://docs.opencv.org/3.4/d4/d73/tutorial _py_contours_begin.html

IMAGE PROCESSING

Retrieval mode is how the hierarchy of contours is going to
be built. The hierarchy can be a flat list (which is the same
as no hierarchy at all), a tree (that creates a full hierarchy
of nested contours) and other different methods. Since the
controller’s system doesn’t need to remember which contour
is a child of which other contour, there’s no need to spend the
extra computational cost of building and operating over a tree,
therefore, it makes more sense to use a flat list.

Approximation methods generate compressed or simplified
versions of the actual contours present in the image [18].
Although they can be useful when a large amount of contours
are present, they aren’t necessary in this project, furthermore,
there are reasons not to use approximations in this case: it’s
easier to get better/more precise features out of the contours
found.

F. Contour’s features extraction

Having identified the contours, it’s now time to extract their
features. The first feature to be found is the area, which is
calculated by the Green’s Theorem, described in Equation 11:

areazjgc(de-ery):[fD(%]xw—gi)dxdy (11)

where C'is a positively oriented, piece-wise smooth and simple
closed curve in a plane; D is the region that is bounded by C;
L and M are functions of (x,y) well defined on a open region
that contains D and that have continuous partial derivatives.
Also, the path of integration along C' is counterclockwise.

The perimeter is another important feature that needs to be
calculated. Since the video stream after thresholding is applied
can be represented as a 2D matrix, the formula to calculate
the arc length of a curve on a plane suffice. The formula is
given by the Equation 12 [19]:

b b
arclength = f T2+ g'(1)2dt = f 17t (12)
where the smooth curve C' is defined by
T(t) = f(t)i+g(t)], a<t<b

Both the area and the perimeter are used in the automatic
button identification, as described in subsection III-G. The
next feature to be extracted are the moments of the contour.
Equation 13 shows how the spatial moments are computed.

mi; = Z [array(:r,y) cqd -yz] (13)

x,y
and with m;; calculated, it’s possible to find the center of
mass, also known as centroid, of the contour through the

Equations 14:
__ Mo __ Mol
T=—35 Yy=—
moo Moo

(14)

which are used in the code to verify the button presses, as it’ll
be explained in subsection III-I.

Finally, the bounding rectangle can be extracted. The bound-
ing rectangles of the buttons contours are used in the automatic

video cropping (subsection III-H). The bounding rectangle’s
points are given by the set of equations 15:

TR= (maxw(f(x,y)),mmy(f(ac,y)))
BL = (mmL(f(x,y)),maxy(f(m,y)))
BR = (maz,(f(z,y)), maz,(f(z,y)))

where T'L is the top-left point, T'R is the top right, BL is
the bottom left and B R, the bottom right. With the points, it’s
trivial to draw the lines between them.

rect =

15)

G. Automatic button identification

To perform the automatic button identification, first, 30
frames are captured and for each one, the area and perimeter
for all the contours found are stored. The perimeter against
area scatter plot in Figure 6 (which is shown magnified in
Figure 7) for the data collected shows 3 distinct clusters of
elements: the blue, the orange and the green.

Contours Perimeter x Area Scatter
]

Perimeter

Area

Fig. 7. Perimeter x Area scatter plot for all the contours found in the 30
frames recorded for analysis

The blue elements have very small perimeter and area,
therefore can be classified as noise. The green elements are the
opposite and they represent the contours related to the sheet
of paper or other large contours found. The buttons will not
be in any of those groups, since they are neither too small,
nor too big, which means they’ll be in the orange cluster of
elements.

What is wanted in this part of the process is to find the
buttons. Since the area and perimeter of the orange elements
should match with a very good accuracy the average values
of the buttons area and perimeter features, they can be used
as exactly that, that is, for every frame streamed to the Video
Joystick program from now on and for every contour in each
of the frames, if the area and perimeter of this contour are
within a range of the average calculated, that means it is a
button, otherwise it isn’t.

In practice, Video Joystick calculates the median of the
area and perimeter of all the elements recorded, since it’s the
absolute fastest way to achieve the objective of finding good
average area and perimeter that are inside the orange cluster.
A more precise alternative would be to cluster the data with
K-Means [20] and then find the real average of the orange
cluster. With our experimental analyses, we concluded that
this more precise version is unnecessary.

IMAGE PROCESSING

Thus, for each contour ¢ in any give frame, it has to satisfy
the Inequalities 16 to classify as a button.

{ med(A(S)) —rq <a(i) <med(A(S)) + 1, (16)

med(P(S)) —rp <p(i) <med(P(S)) +1p

where med is the median, A(S) and P(S) are the set of areas

and perimeters, respectively, of the set of elements .S obtained

during the 30 frame exposition time, a(i) and p(7) are the

area and perimeter of ¢, and 7, and r, are defined ranges or
margins of error.

This method implies that all the buttons have approximately
the same size. If this is not the case, there should be either
different r values for the buttons, or one big enough to
accommodate all different sizes. Although this is not a difficult
feature to implement, it is not needed for this article, since we
use the model shown if Figure 4 to execute the experiments,
which assumes buttons with the same dimensions.

H. Automatic video cropping

Cropping the video frame, so that only the necessary parts
of the frames appear, is an important step to reduce the
possibilities of noise interfering with the calculations and also
reduce CPU stress, since after cropping, there are fewer pixels
to process.

Once the bounding rectangles of the buttons were extracted,
it’s trivial to define a satisfactory crop: the area to be cropped
is another bounding rectangle that bounds all the previous
bounding rectangles plus a tolerance value on each side to
better accommodate the buttons on the screen.

L. Identifying button presses

This is another straightforward procedure once the features
have been extracted from the buttons contours. For each
button, let (Z,., 7,) be its center of mass (or centroid) recorded
during the 30 frames exposition time. In the running applica-
tion (after the calibration ends), for each frame, check if the
current centroid position (Z.,7.) of this button satisfies the
Inequality 17:

\/(‘fT - jc)2 + (:gr - :gc)2 <r
where the inequality itself represents if the current centroid
is within a radius » from the recorded centroid. If it is, the
button is not pressed, since its contour is not deformed enough
to change its centroid position. In the case where the new
centroid falls outside the established range, it means something
is interfering severely with the button’s contour, therefore it
must be obstructed (pressed). Notice how this works best if the
buttons are of a convex (preferably circular/elliptical) shape.
For non trivial shapes, this method does not suffice.

The interesting part of this approach is that it doesn’t matter
if a button is obstructed by a black-thresholded object or white-
thresholded object. If the first case applies, there is, most of the
time, a reduction of the button’s area and perimeter, whereas
if the second case happens, it’s the opposite. For both cases
there’s a contour’s shape deformity, which interferes directly
on the centroid’s position.

a7

IV. IMPLEMENTATION DETAILS

OME important information on how Video Joystick is
built and how some specific parts of the program works
are described in this section.

A. Tools used

The tools used to build Video Joystick are all open source
and should run on all major operating systems. Python 3* is
the programming language of choice. Along with Python 3,
some libraries are being used: NumPy’ to deal with matrices
and mathematical operations, Pynput® to send key inputs to the
operating system and, of course, OpenCV as the heavy-lifter
in respect to the video/image processing parts of the project
(which are most of them).

B. Contour fine-tuning and key mapping

Although the buttons are automatically identified, Video
Joystick may fail to properly process the contours due to
unexpected factors and, consequently, fail to identify the
buttons. With this in mind, the user may manually fine-tune
the ranges in which buttons will be searched through a very
basic user interface, as shown in Figure 8: Also, the user has to

Area: 2498 ~ 3298

Perimeter: 182

Fig. 8. Manual area and perimeter fine-tuning user interface

map which keyboard key will be represented by which Video
Joystick button. This is done in a very similar fashion to the
contour fine-tuning, as seen in Figure 9: A basic manual on

Fig. 9. Key mapping user interface

how to configure Video Joystick is provided along the source
code for the project.

V. EXPERIMENTAL METHODOLOGY

“https://www.python.org/
Shttps://numpy.org/
Ohttps://pypi.org/project/pynput/

IMAGE PROCESSING

XPERIMENTAL methodology consists in letting differ-
ent people play two different games: SuperTux’ (Fig-
ure 10) and StarMines: The Next Generation® (Figure 11).
The first is a Free and Open Source platformer similar to
Nintendo’s Super Mario and the second is a Free and Open
Source Asteroids-like game. For SuperTux, the participants are
required to go through the first level and for StarMines, they
play until they lose all available extra lives.
The game sessions are recorded and the players are briefly
interviewed to talk about their experience with the controller.
We collect the following data about the recordings:

« Input delay - time between pressing the button and seeing
the action

« Correctness - the command sent to the game is the one
inputted?

« Contour detection failure - something that wasn’t detected
or that was but wasn’t supposed to be characterizes a
detection failure

The subjective questions asked to the players are:

« How did you feel about the controller?

e Did you get used to it already? If not, would you
eventually?

o Which game was harder to play? Why?

« What are your suggestions to improve the controller?

‘s

Fig. 11. Screenshot from the game StarMines: The Next Generation

VI. RESULTS AND DISCUSSION

NALYZING the collected footage, which was captured
at 60 frames per second, we get that the average input
delay between a button press and a action taking place in
the games is 8.3ms. This was calculated by taking several

"https://www.supertux.org/index.html
8https://smtng.jpkware.com/

examples of actions and counting the frames between the
presses and actions.

All the actions happened at most 1 frame after a button has
been pressed, so in the worst case there’s a delay of 16.6ms,
since:

f 1 o
rames _ . o = 0016 = 16.6 10735, (18)

frames_delay - =
- y second 6

and because approximately 50% of the times there was ab-
solutely no frame delay, it makes sense to take the average
between 16.6ms and 0.0ms, which is 8.3ms. This value is
pessimistic, seeing that analyzing SuperTux, many times Tux
was already rather distant from the floor in the next captured
frame after the jump button has been pressed. Refer to Sections
2, 3, 4 and 5 of the Supporting Information to see a few of
the analyzed inputs.

There was no problems related to correctness whatsoever
during the performed tests. All the inputs, when recognized,
were correctly sent to the computer and executed in the game.
The key phrase here is “when recognized”, since there were
times where the controller failed to identify that a button was
pressed, as seen in Section 6 of the Supporting Information.
This is not a very common behavior and was observed more
during button mashes or atypical situations.

Now, we display the opinions from three different people
about the controller. They were asked the previously men-
tioned questions.

How did you feel about the controller?

Player 1: “The biggest shock regarding using the controller
was the fact that I couldn’t keep my hands on the buttons
and keep in mind that shadows also press the buttons, which
is different from any other controller that I've used in the
past. I also felt that a few times the buttons I pressed weren’t
recognized or they kept going on even after I released the
button.”

Player 2: “I really liked it, although it felt odd not being
able to have my fingers on top of the buttons all the time, like
I would in a regular controller/keyboard. The responsiveness
was great and it’s intuitive to use. In the beginning, I just had
to keep remembering myself that it’s not pressing the buttons
that’s going to result in a game move, but keeping your fingers
inside and outside of the responsive area; but that’s easily
learned from practice.”

Player 3: “I enjoyed using it. Covering one button at a
time resulted in good responsiveness, but sometimes, when I
covered two or more buttons, one of them wasn’t recognized
or kept being recognized even after uncovering it.”

Did you get used to it already? If not, would you eventually?

Player 1: “Yes, I got used to it fairly quickly, although I
wouldn’t use it in games where dexterity or extremely precise
movement is fundamental”

Player 2: “I did, yes. And I think that if anyone tries the
controller enough times, they’ll get used to it. The main thing
that made me better at it was realizing that I needed to keep my
fingers away from the responsive area instead of just stopping
pressing the button for my character to stop doing a move.”

IMAGE PROCESSING

Player 3: “Yes. It was weird at first not being able to feel
any button being pressed or where I was touching on the paper,
but eventually I got used to the places where I should cover.”

Which game was harder to play? Why?

Player 1: “The second game was much harder to play. The
spaceship’s inertia in the space makes it difficult to control.
I felt that the game would have been a little easier on a
traditional controller, where I could’ve input little nudges to
straighten the ship more easily.”

Player 2: “The second one. The spaceship was much harder
to control than the penguin. The sensitivity and the fact that
we had to use multiple buttons simultaneously made it very
hard to move and to aim exactly where I wanted.”

Player 3: “The second one, definitely. I think it would be
harder using pretty much any controller, since it requires much
more precision and coordination.”

What are your suggestions to improve the controller?

Player 1: “T'd say that shadows pressing buttons is an
inconvenience, so fixing this would make the controller easier
to operate”

Player 2: “Sometimes, in the penguin game, I had trouble
jumping while pressing the forward button; it would be great
if that could be fixed. I don’t know if it’s something that’s
related to the game or to the controller itself, but I also think
that we should be able to make the "turn button’ less sensitive
to the spaceship game in order to make the ship turn around
slower. That way we could control it much easier.”

Player 3: “The problem that happens when multiple buttons
are pressed was my only problem, actually. If that was fixed
the controller would be perfectly usable for me.”

VII. CONCLUSION AND FUTURE WORKS

There’s a long history of companies trying to find new
ways to provide a more ergonomic, easy-to-use and immersive
gaming experience through new input methods. Video Joystick
attacks primarily the easy-of-use aspect providing an accessi-
ble way to put together a joystick and play anywhere, given
the player has access to a webcam, sheet of paper, pen and a
computer with Python 3 and the required libraries installed.

The experience playing with Video Joystick is different from
the usual, since it doesn’t require touching anything, but also
works just as fine if the buttons are, in fact, touched. It also
requires some adaptation in respect to the way the players
position their hands to operate the controller, which can be
hard in the beginning, but our studies show that the adaptation
process isn’t complicated and most players can learn how to
use it after a short period of time.

Although the tests ran gave positive results, specially related
with the more technical aspects of the controller, it is not the
perfect input method and still needs to be further calibrated and
automated, so that it’s even easier to use. For now, we provided
a good enough system to play basic games, but since the
project is fully open source (See Section 7 in the Supporting
Information), we hope that interested and technically capable
users can modify the developed code to better fulfill their
needs.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

M. Wolf, The Video Game Explosion: A History from PONG to
Playstation and Beyond. Greenwood Press, 2008. [Online]. Available:
https://books.google.com.br/books?id=XiMOntMybNwC

M. Cowan, “Interactive media and imperial subjects: Excavating
the cinematic shooting gallery,” European Journal of Media
Studies, no. 1, pp. 1744, 2018. [Online]. Available:
https://doi.org/10.25969/mediarep/3438

R. Bhardwaj, “The ergonomic development of video game controllers,”
Journal of Ergonomics, vol. 07, 01 2017.

Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia,
vol. 19, no. 2, pp. 4-10, 2012.

M. Liebl, “Wii lifetime sales surpass 100 million
units - gamezone,’ GameZone, 2013. [Online]. Avail-
able: https://www.gamezone.com/news/wii-lifetime-sales-surpass-100-

million-units/

B. Romaissa, B. Nini, M. Sabokrou, and A. Hadid, “Vision-based human
activity recognition: a survey,” Multimedia Tools and Applications,
vol. 79, 11 2020.

R. Lun and W. Zhao, “A survey of applications and human motion
recognition with microsoft kinect,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 29, no. 05, p. 1555008,
2015. [Online]. Available: https://doi.org/10.1142/S0218001415550083
J. Aggarwal and L. Xia, “Human activity recognition from 3d data:
A review,” Pattern Recognition Letters, vol. 48, pp. 70-80, 2014,
celebrating the life and work of Maria Petrou. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167865514001299
M. Ahmad and S.-W. Lee, “Human action recognition using shape
and clg-motion flow from multi-view image sequences,” Pattern
Recogn., vol. 41, no. 7, p. 2237-2252, Jul. 2008. [Online]. Available:
https://doi.org/10.1016/j.patcog.2007.12.008

P. Wang, W. Li, P. Ogunbona, J. Wan, and S. Escalera, “Rgb-d-based
human motion recognition with deep learning: A survey,” 2018.

N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, “Reviews on
various inertial measurement unit (imu) sensor applications,” Interna-
tional Journal of Signal Processing Systems, vol. 1, no. 2, pp. 256-262,
2013.

R. F. Tinder, “Relativistic flight mechanics and space travel,” Synthesis
lectures on engineering, vol. 1, no. 1, pp. 1-140, 2006.

H. Singh, “How images are stored in the
computer?”’ Analytics Vidhya, 2021. [Online]. Avail-
able: https://www.analyticsvidhya.com/blog/2021/03/grayscale-and-rgb-
format-for-storing-images/

M. M. Arat, “Rgb to grayscale conversion,” Arat, Mustafa
Murat, 2020. [Online]. Available: https://mmuratarat.github.io/2020-
05-13/rgb_to_grayscale_formulas

A. Rosebrock, “Opencv smoothing and blur-
ring,” pyimagesearch, 2021. [Online]. Available:
https://www.pyimagesearch.com/2021/04/28/opencv-smoothing-and-
blurring/

M. Sezgin and B. Sankur, “Survey over image thresholding techniques
and quantitative performance evaluation,” Journal of Electronic
Imaging, vol. 13, no. 1, pp. 146 — 165, 2004. [Online]. Available:
https://doi.org/10.1117/1.1631315

N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.
62-66, 1979.

C.-H. Teh and R. Chin, “On the detection of dominant points on
digital curves,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 8, pp. 859-872, 1989.

G. Strang and E. erman, “Arc Length and Curvature,”
1 2021, [Online; accessed 2021-08-04]. [Online]. Available:
https://math.libretexts.org/ @ go/page/2596

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, p. 264-323, Sep. 1999. [Online].
Available: https://doi.org/10.1145/331499.331504

