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Abstract
Molecular dynamics (MD) is a powerful framework employed in computational 
materials science. We can go beyond traditional analyses by combining it with 
machine learning (ML) methods, such as clustering and dimensionality reduction. For 
instance, we obtained insights into nanoparticle potential energy surface (PES) and 
configuration space to characterize the temperature-morphology relationship and 
phase transitions. We also can improve the accuracy of MD simulations to near 
quantum accuracy avoiding the high cost of ab initio MD, creating a direct relation 
between atomic coordinates and energies with high-dimensional neural networks, 
where data to represent the PES is obtained with density functional theory. In this 
context, active selection of training data is fundamental to building a more significant 
data set aiming at better performance, and thus we explore active learning in the 
training of the ML force fields.

Machine-Learning Force Fields

Conclusions and Perspectives
For the analysis of MD data, we report an automated procedure to explore the 
potential energy surface of finite-size particles, which can be applied to small and 
large particles. An HDNNP parametrization for solid La2Zr2O7 has been obtained, 
which will be improved by optimizing the chemical space representation and 
validated for application in the study of thermodynamic properties. The optimization 
of chemical space representation will be enhanced by employing active learning via 
autoencoder. 

Force fields: description of interatomic 
interactions

MLFFs: numerical fitting of E({Rα}) 
from high-quality ab initio data, aiming 
to achieve MD simulations with  
quantum chemical accuracy and 
lower computational cost.
Behler-Parrinello High Dimensional 
Neural Network Potentials: 
● Atomic neural networks;
● Finite atomic environments;
● Atom-centered symmetry functions 

for structural fingerprints.

Mixed oxides La2B2O7 (B = Ti, Zr, Ce etc); catalysis for clean energy and 
environment protection, e.g. methane dry-reforming, oxidative coupling of methane.

Autoencoder as active learning query
As a way to optimise the NNP training process, we introduce new methods to 
estimate representativeness and informativeness using autoencoder reconstructions 
loss. This process can be presented as follows :
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Nanocluster processes occur under a variety of experimental conditions, therefore we 
provide a theoretical framework to explore the potential energy surface and 
configuration space of nanoclusters to map the most important morphologies 
presented and phase transitions between them.

t-SNE reveals the basins present in the 
MD trajectories from ReaxFF. These 
basins are automatically identified 
through DBSCAN clustering. As the 
systems heat up, the structures transition 
from basin to basin until they fall into the 
amorphous zone. Sampling from these 
basins reveals different morphologies.

Validating this theoretical framework for the test case of several Cun nanoclusters, we 
concluded that many of our observations, such as the transition temperatures, number 
of basins, and complexity of the interpolated PES, show that the Cun nanoclusters with n 
= 13, 55, 147 have special configuration spaces, which agrees with the magic numbers 
for icosahedral nanoclusters.
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