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Motivation

Provide a faster method of materials screening, so that experts
have access to large-scale analysis of material properties.

How?

Using Machine Learning methods, specifically biased clustering,
to obtain molecules that represent a larger set. Only these
molecules will need to be analyzed using costly methods like
Density Functional Theory, instead of all the others.
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Supervised Clustering?

For a biased clustering system, two algorithms working together
are needed:

® C(lustering algorithm
e Optimization algorithm

For the purposes of this presentation, it will be shown how
K-Means and Simulated Annealing work together to bias the
clustering process, in order to satisfy the needs of the specialist.
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K-Means

Clusters dataset’s items based on similarity.

Choose k centroids to match k random elements
from the database

2. Assign each element to the nearest (most
similar) centroid

3. Recalculate the centroid of each cluster as
the center of mass of its members

4. While the convergence criterion isn't met,
repeat from step 2
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K-Means Convergence By Chire - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59409335



K-Means - Wrong number K leads to poor clustering DBSCAN - Doesn't even need a number K
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Simulated Annealing

Aims to find global optima of functions

1. Initialize the temperature t as a high value
and the current state cO as a set of random
values

2. Select a new state c1 from a neighbor of the
current state and calculate AC = c1 - c©

3. If AC = © or exp(-AC / t) > random(©, 1) then
current_state <- new_state

Else
do nothing

4. Decrement t. If there is still no convergence,
repeat the second step
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Sim. Annealing Convergence By Kingpin13 - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=25010763
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K-Means + Simulated Annealing

K-Means receives an array of features, where each feature has a
weight w, so that clustering can be done. From the configuration
generated by K-Means, a result v is extracted. This result is
precisely what will be optimized by Simulated Annealing. The
optimization algorithm control the weights w given the value v.

Simulated Annealing

I ”
v11wi v12wW2
f | K-Means | |vorwi v99w9 = v
| V31w v32W3 |
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K-Means + Simulated Annealing

Thus, it is possible to bias the

reg_av_bl_Pt _dav

. . . ® 1st
clusters following an objective. ® 200th
o i reg_exc_energy reg_av_bl TM_dav ® 400th
For example: minimize the 600th
® 800th

maximum variance in the number
of elements per cluster.

reg_qtn Pt _ eg_av_bl Pt ecn

The figure to the side shows the
convergence of the weights of
the features along the iterations.

reg_TM_surf reg_av_bl TM_ecn

reg_PT_surf

Notice how, in the beginning, all features had the same weight
and these weights were transformed until they converged.
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Example Result 1

In the graph we can see a disparity in reg_qtb Pt (amount of platinum),
reg_TM_surf (amount of transition metals on the surface) and reg_Pt_surf (amount
of platinum on the surface). That is, the molecules were grouped taking into
account mainly the amount of platinum and transition metals.

reg_Pt_surf
_TM_surf
reg_qtn_Pt

av bl TM ecn 1
reg

reg_av_bl Pt _dav f
_av_bl TM_dav
reg_exc_energy

reg_av_bl Pt ecn

reg
reg
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Example Result 2

Increasing the number of clusters causes subdivisions into groups given by less
prevalent characteristics such as reg_av_bl Pt _ecn and reg_av_bl TM_ecn
(average number of neighbors of Pt or TM in the molecule).

TM_surf

reg_Pt_surf
reg_qtn_Pt

av bl TM ecn 1
reg

reg_av_bl Pt dav -
_av_bl TM_dav
reg_av_bl Pt ecn -
reg_exc_energy -

eg
‘eg
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Toolbox in development

A toolbox for executing the supervised/biased clustering
algorithm from graphical or command line interfaces is being
developed.

Biased Cluster setup

Dataset (.csv): ...0/biased_cluster/test_data.csv
Bias Column: reg_exc_energy 5
Optimization: ® Minimize © Maximize bias column variance
# of samples: 5

# of iterations: 1000
Output name: test_data_output

Below are the additional parameters for Simulated Annealing:

Maximum step: 10
Initial temp: 1000
Temp factor: 0.99

Mv average size: 5

Mv average exit: ©0.01

Coc ] concer
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Remarks

1. The toolbox will support not only K-Means, but other
clustering algorithms too.

2. This tool can be used in many different situations where the

specialist wants to look for specific groups, highlighting some
property.
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Thank you!
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