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I Problem Characterization

e Chemical Space exploration is a recurrent activity in MS
e Generative ML methods to fulfill this purpose are emerging, such as VAEs
e VAES' latent spaces’ dimensions do not follow properties

e Current graph-based VAEs have big limitations and could be much better
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I Objectives

e Graph-based VAE with navigable latent space, emphasizing properties
e Find a cost function for the VAE that corroborates with the objective

e Include disentanglement procedures to make navigation even better

e Project an elastic model for the iterative ampliation of the latent space

e Test the developed technology using chemical datasets of interest




Methods - GNN and Message Passing

e Graphs encode molecules well and
store more information than typical
string representations.

e GNN receives graphs as input and
encodes the vertices and edges as

feature vectors.

e MP algorithm is applied so vertices Figure 1: Message Passing

are informed about their neighbors .
representation




. Methods - Variational Autoencoder

e Autoencoders, by default, work like

the identity function
\, e |t is possible to sample data from
/\i the latent space of a VAE
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Figure 2: Variational Autoencoder learn different properties
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Figure 3: Semi-Supervised

Autoencoder topology
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Figure 4: GVAE vs SGVAE (Oliveira, A. F., Da

Silva, J. L., Quiles, M. G., 2022)

e It is possible to combine a predictor and a

VAE to further organize the latent space -




! Methods - Grammar AE vs Graph AE

Grammar Autoencoder
encoding Alanine
represented by SMILES.

Graph Autoencoder
encoding Alanine
represented by 3D
Graph.
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I Expected Results

e Semi-supervised learning system capable of finding useful chemical
compounds through chemical space exploration
e Reduction on materials screening time (one of the most time-consuming

tasks), improving research productivity



' Challenges

e Encoding large molecules
e Directing properties
e Configuring hyper-parameters

e Obtaining useful molecules
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