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Machine Learning and Data Mining

e Machine Learning (ML) is a subset of Artificial Intelligence (Al) that studies algorithms that

learn from data instead of being explicitly programmed.

e Typical uses for ML include prediction, classification and clustering.

e Data Mining (DM) extracts useful information from datasets by using statistical techniques.

e ML is used, within DM, as a way to perform pattern recognition and data visualization.
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§ Combining Data Mining Techniques with Materials oo
Science

e Materials Science (MS) generates huge amounts (o g
. Bt Molecullar Othe_r
of data, due to Molecular Dynamics (MD), Density Dynamics | | calculations

~ Theory .

Functional Theory (DFT) and other calculations. _¢ i h
A big amount of data

v

e Here, We'll showcase cutting edge ML+DM tools Data Mining &

e This is a great scenario for Data Mining, in

contrast to manual analyses.
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! Automatic features-property relationship analysis

Finding features that correlate well with a target property is an
essential part of building a good ML model. This framework proposes
a featurization process to convert atomistic features into molecular
properties (AtoMF), which have their relationship with a target
property automatically tested. Correlation techniques tested: Pearson,
Spearman and Kendall. We selected Spearman due to the values

being more spread inside [-1, 1] range and less sensitive to outliers.
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Samples of insights obtained
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For Ce Zr,, O, feature 24" has a bigger magnitude

and has more significant correlations than x4¢,
showing that Zr atoms are preferred over Ce for core
sites or surface sites with little vacuum exposition.

Similar patterns shown with #5 and #5.

0

To understand the diagram generated by the
framework, it is important to point out that Direct
correlations indicate that as a particular feature
increases in value, so does the target property,
while inverse correlations mean that as a particular
feature increases in value, the target property
decreases and vice versa.

With this in mind, we have that the change of the
amount of Zr in core sites or sites with little vacuum
exposition has a bigger impact in the Relative Total

Energy value of the system than the change of Ce.




I Potential Energy Surface exploration and phase

transition mapping

Potential Energy Surface
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Exploration of the Potential Energy Surface (PES)
the

morphologies and phase transitions. Considering the

enables

the discovery of most

important
variety of experimental conditions and the sensitivity
of nanocluster properties given the geometry, this tool

can be used for the development of many technologies.

C%%D
The analysis of PES has many challenges, such as the
number of minima present and a good MD trajectory

representation, both of which benefit from having a

good high-dimensional projection into a low dimension.
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! Machine Learning in the inner workings

Having the PES and trajectories projected by t-SNE, the framework uses
DBSCAN+kNN to cluster the data and suggest phase transitions. Transitions

are validated by a post-processing algorithm based on chemical knowledge.
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! Applications for the theoretical framework

PES projected using t-SNE

-1920

404 -2000

e PES projection plots with MD trajectories o

0 | | : ey

-2080 =
£
r-2160 =

L -2240 X

Comp. 2

e Phase and geometrical transitions

r-2320

nergy (kca

-20-

e Stability of a geometrical configuration

-2400 H

-2480

-2560

e Ability to classify atomic arrangements by 2D
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surface analysis (as depicted to the right). @ @
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The paper validates these insights on Cu MD

dataset for n = 13, 38, 55, 75, 98, 102 and 147.




J Guided Clustering for Selecting Representatives o
Samples in Chemical Databases  womumc

Configuration
Dataset (.csv): [ ..ed_cluster/datasets/CeZr0O4.csv
Output folder: [ ..iased_cluster/output/CeZr04_Ce
A B C D E F G H Random Seed: " Random * Fixed: 321
1 mol_id A B C mu alpha homo lumo rK-Means
# of clusters: « Up to " Exactly 20
2 gdb_99999  2.7271 106245 092523 43756 7499 -0.2387 -0.0151 By —
3 gdb 99998 2.51701 1.04328 0.92206 3.2622 8194 -0.2432 -0.019 rBasinhopping
Optimization: * Enabled  Disabled
4  gdb_99997 2.88709 103261  0.9354 10852 75.03 -0.2623 -0.0407 e ot o i
5 gdb 99996 2.12813 1.37568 1.04569 4.0383 75.36 -0.2682 0.0146 i e DreEneienos |
Maximum step: 1
6 gdb 99995 2.14226 1.34838  1.03262  1.6323 80.48 -0.2518 0.0336 BT R =
76 gdb 99994  2.11279 1.28068 1.15782 3.5438 79.07 -0.2614 0.0352 BHCEES S HEECE SR 25
Goal: * Minimize  Maximize bias column variance
8 gdb 99993  2.62289 1.15289 0.99203 3.8564 8245 -0.2656 0.0372 ieeellancons
9 gdb 99992 2.62779 1.14263 0.98503 1.0819 87.79 -0.2513 0.0552 Feedback: * Normal « Verbose
10 gdb_99991  2.74565 110774 096921 384 753  -0.276 0.0124

Analysis of a molecule or nanocluster can be expensive and time-consuming, experimentally and
computationally. Selecting those that represent the best a large amount of similar entities is very interesting,
since analyzing only them is cheaper, faster and gives a good overview of what the rest look like. This tool
enables the selection of representatives and automates many of the tasks that would have to be done manually,

such as selecting the number of clusters and scaling the features properly to highlight a desired property.



I Finding better representatives cho

The toolbox suggests a value for K based on the Silhouette Criterion, and

scales the values of the features by an iterative optimization depicted below.
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) L
Applications for Cu . nanoclusters

e K=I4 clusters or representatives
minimizes E_intracluster variance.

e 3 of 4 clusters with low energies
averages are associated to 7,, C, and
D, shapes, which are highly stable.

e Automatic scaling has a big impact on
the feature space. Comparing to

non-scaled features, we have a

Normalized Mutual Index (NMI) of

0.730.

Cluster 0* Cluster 1 Cluster 2 Cluster 3 Cluster 4
-2524.70 kcal/mol -2527.52 kcal/mol -2507.70 kcal/mol -2503.57 kcal/mol -2498.29 kcal/mol
Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

&
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Conclusion 6>
There is an ever-growing amount of studies combining ML and MS, and as a
result of our efforts in the domain of these studies, we can now:

e Automatically find correlations between features and properties

e Project PES and map phase/geometric transitions

e Find representative samples with underlying physicochemical knowledge
And there are still gaps in the literature that we can fill. As an example,
several methods can be applied for representative sample selection, but

there is no survey in the chemical/materials science fields.




